A surprising Radon transform result and its application to motion detection
An elliptical region of the plane supports a positive-valued function whose Radon transform depends only on the slope of the integrating line. Any two parallel lines that intersect the ellipse generate equal line integrals of the function. We prove that this peculiar property is unique to the ellips...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 1999, Vol.8 (8), p.1039-1049 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1049 |
---|---|
container_issue | 8 |
container_start_page | 1039 |
container_title | IEEE transactions on image processing |
container_volume | 8 |
creator | Marzetta, T.L. Shepp, L.A. |
description | An elliptical region of the plane supports a positive-valued function whose Radon transform depends only on the slope of the integrating line. Any two parallel lines that intersect the ellipse generate equal line integrals of the function. We prove that this peculiar property is unique to the ellipse; no other convex, compact region of the plane supports a nonzero-valued function whose Radon transform depends only on slope. We motivate this problem by considering the detection of a constant-velocity moving object in a sequence of images. In the presence of additive, white, Gaussian noise. The intensity distribution of the object is known, but the velocity is only assumed to lie in some known set, for example, an ellipse or a rectangle. The object is to find a space-time linear filter, operating on the image sequence, whose minimum output signal-to-noise ratio (SNR) for any velocity in the set is maximized. For an ellipse (and its special cases, the disk and the line-segment) the special Radon transform property of the ellipse enables us to obtain a closed-form, analytical solution for the minimax filter, which significantly outperforms the conventional three-dimensional (3-D) matched filter. This analytical solution also suggests a constrained minimax filter for other velocity sets, obtainable in closed form, whose SNR can be very close to the minimax SNR. |
doi_str_mv | 10.1109/83.777085 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_18267519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>777085</ieee_id><sourcerecordid>27143138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-76edef2fb103f1e546ddabc14906221e196bc23838cd746673157ccc758f56483</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_AgiruuHrx6kB5E8dA1k3eOy-ILFwTRc0nTVCp9rEl78Nvb2qKe9JSB_JgZ5o_QMeAlANZXii6llFjxHTQHzSDGmJHdvsZcxhKYnqGDEN4wBsZB7KMZKCIkBz1HD6sodH7ri1DUr9GTyZo6ar2pQ974KvIudGUbmTqLijZEZrstC2vaYkBNVDVfVeZaZ4fqEO3lpgzuaHoX6OXm-nl9F28eb-_Xq01sGWFtLIXLXE7yFDDNwXEmssyktl8TC0LAgRapJVRRZTPJhJAUuLTWSq5yLpiiC3Qx9t365r1zoU2qIlhXlqZ2TRcSDVpTwoH-KyVloAQB3cvzPyVRAoji7H_Y35sCHba8HKH1TQje5Ul_5cr4jwRwMsSWKJqMsfX2dGrapZXLfuSUUw_OJmCCNWXeJ2SL8MsprMXATkZWOOe-f6chn0NOpaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27143138</pqid></control><display><type>article</type><title>A surprising Radon transform result and its application to motion detection</title><source>IEEE Electronic Library (IEL)</source><creator>Marzetta, T.L. ; Shepp, L.A.</creator><creatorcontrib>Marzetta, T.L. ; Shepp, L.A.</creatorcontrib><description>An elliptical region of the plane supports a positive-valued function whose Radon transform depends only on the slope of the integrating line. Any two parallel lines that intersect the ellipse generate equal line integrals of the function. We prove that this peculiar property is unique to the ellipse; no other convex, compact region of the plane supports a nonzero-valued function whose Radon transform depends only on slope. We motivate this problem by considering the detection of a constant-velocity moving object in a sequence of images. In the presence of additive, white, Gaussian noise. The intensity distribution of the object is known, but the velocity is only assumed to lie in some known set, for example, an ellipse or a rectangle. The object is to find a space-time linear filter, operating on the image sequence, whose minimum output signal-to-noise ratio (SNR) for any velocity in the set is maximized. For an ellipse (and its special cases, the disk and the line-segment) the special Radon transform property of the ellipse enables us to obtain a closed-form, analytical solution for the minimax filter, which significantly outperforms the conventional three-dimensional (3-D) matched filter. This analytical solution also suggests a constrained minimax filter for other velocity sets, obtainable in closed form, whose SNR can be very close to the minimax SNR.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.777085</identifier><identifier>PMID: 18267519</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive noise ; Additive white noise ; Applied sciences ; Ellipses ; Exact sciences and technology ; Exact solutions ; Gaussian noise ; Image processing ; Image sequences ; Information, signal and communications theory ; Matched filters ; Mathematical analysis ; Minimax technique ; Minimax techniques ; Motion detection ; Nonlinear filters ; Object detection ; Planes ; Radon ; Signal processing ; Signal to noise ratio ; Telecommunications and information theory ; Transforms</subject><ispartof>IEEE transactions on image processing, 1999, Vol.8 (8), p.1039-1049</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-76edef2fb103f1e546ddabc14906221e196bc23838cd746673157ccc758f56483</citedby><cites>FETCH-LOGICAL-c424t-76edef2fb103f1e546ddabc14906221e196bc23838cd746673157ccc758f56483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/777085$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/777085$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1880969$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18267519$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marzetta, T.L.</creatorcontrib><creatorcontrib>Shepp, L.A.</creatorcontrib><title>A surprising Radon transform result and its application to motion detection</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>An elliptical region of the plane supports a positive-valued function whose Radon transform depends only on the slope of the integrating line. Any two parallel lines that intersect the ellipse generate equal line integrals of the function. We prove that this peculiar property is unique to the ellipse; no other convex, compact region of the plane supports a nonzero-valued function whose Radon transform depends only on slope. We motivate this problem by considering the detection of a constant-velocity moving object in a sequence of images. In the presence of additive, white, Gaussian noise. The intensity distribution of the object is known, but the velocity is only assumed to lie in some known set, for example, an ellipse or a rectangle. The object is to find a space-time linear filter, operating on the image sequence, whose minimum output signal-to-noise ratio (SNR) for any velocity in the set is maximized. For an ellipse (and its special cases, the disk and the line-segment) the special Radon transform property of the ellipse enables us to obtain a closed-form, analytical solution for the minimax filter, which significantly outperforms the conventional three-dimensional (3-D) matched filter. This analytical solution also suggests a constrained minimax filter for other velocity sets, obtainable in closed form, whose SNR can be very close to the minimax SNR.</description><subject>Additive noise</subject><subject>Additive white noise</subject><subject>Applied sciences</subject><subject>Ellipses</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Gaussian noise</subject><subject>Image processing</subject><subject>Image sequences</subject><subject>Information, signal and communications theory</subject><subject>Matched filters</subject><subject>Mathematical analysis</subject><subject>Minimax technique</subject><subject>Minimax techniques</subject><subject>Motion detection</subject><subject>Nonlinear filters</subject><subject>Object detection</subject><subject>Planes</subject><subject>Radon</subject><subject>Signal processing</subject><subject>Signal to noise ratio</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLxDAQB_AgiruuHrx6kB5E8dA1k3eOy-ILFwTRc0nTVCp9rEl78Nvb2qKe9JSB_JgZ5o_QMeAlANZXii6llFjxHTQHzSDGmJHdvsZcxhKYnqGDEN4wBsZB7KMZKCIkBz1HD6sodH7ri1DUr9GTyZo6ar2pQ974KvIudGUbmTqLijZEZrstC2vaYkBNVDVfVeZaZ4fqEO3lpgzuaHoX6OXm-nl9F28eb-_Xq01sGWFtLIXLXE7yFDDNwXEmssyktl8TC0LAgRapJVRRZTPJhJAUuLTWSq5yLpiiC3Qx9t365r1zoU2qIlhXlqZ2TRcSDVpTwoH-KyVloAQB3cvzPyVRAoji7H_Y35sCHba8HKH1TQje5Ul_5cr4jwRwMsSWKJqMsfX2dGrapZXLfuSUUw_OJmCCNWXeJ2SL8MsprMXATkZWOOe-f6chn0NOpaE</recordid><startdate>1999</startdate><enddate>1999</enddate><creator>Marzetta, T.L.</creator><creator>Shepp, L.A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>1999</creationdate><title>A surprising Radon transform result and its application to motion detection</title><author>Marzetta, T.L. ; Shepp, L.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-76edef2fb103f1e546ddabc14906221e196bc23838cd746673157ccc758f56483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Additive noise</topic><topic>Additive white noise</topic><topic>Applied sciences</topic><topic>Ellipses</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Gaussian noise</topic><topic>Image processing</topic><topic>Image sequences</topic><topic>Information, signal and communications theory</topic><topic>Matched filters</topic><topic>Mathematical analysis</topic><topic>Minimax technique</topic><topic>Minimax techniques</topic><topic>Motion detection</topic><topic>Nonlinear filters</topic><topic>Object detection</topic><topic>Planes</topic><topic>Radon</topic><topic>Signal processing</topic><topic>Signal to noise ratio</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzetta, T.L.</creatorcontrib><creatorcontrib>Shepp, L.A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Marzetta, T.L.</au><au>Shepp, L.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A surprising Radon transform result and its application to motion detection</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>1999</date><risdate>1999</risdate><volume>8</volume><issue>8</issue><spage>1039</spage><epage>1049</epage><pages>1039-1049</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>An elliptical region of the plane supports a positive-valued function whose Radon transform depends only on the slope of the integrating line. Any two parallel lines that intersect the ellipse generate equal line integrals of the function. We prove that this peculiar property is unique to the ellipse; no other convex, compact region of the plane supports a nonzero-valued function whose Radon transform depends only on slope. We motivate this problem by considering the detection of a constant-velocity moving object in a sequence of images. In the presence of additive, white, Gaussian noise. The intensity distribution of the object is known, but the velocity is only assumed to lie in some known set, for example, an ellipse or a rectangle. The object is to find a space-time linear filter, operating on the image sequence, whose minimum output signal-to-noise ratio (SNR) for any velocity in the set is maximized. For an ellipse (and its special cases, the disk and the line-segment) the special Radon transform property of the ellipse enables us to obtain a closed-form, analytical solution for the minimax filter, which significantly outperforms the conventional three-dimensional (3-D) matched filter. This analytical solution also suggests a constrained minimax filter for other velocity sets, obtainable in closed form, whose SNR can be very close to the minimax SNR.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18267519</pmid><doi>10.1109/83.777085</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 1999, Vol.8 (8), p.1039-1049 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_18267519 |
source | IEEE Electronic Library (IEL) |
subjects | Additive noise Additive white noise Applied sciences Ellipses Exact sciences and technology Exact solutions Gaussian noise Image processing Image sequences Information, signal and communications theory Matched filters Mathematical analysis Minimax technique Minimax techniques Motion detection Nonlinear filters Object detection Planes Radon Signal processing Signal to noise ratio Telecommunications and information theory Transforms |
title | A surprising Radon transform result and its application to motion detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20surprising%20Radon%20transform%20result%20and%20its%20application%20to%20motion%20detection&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Marzetta,%20T.L.&rft.date=1999&rft.volume=8&rft.issue=8&rft.spage=1039&rft.epage=1049&rft.pages=1039-1049&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.777085&rft_dat=%3Cproquest_RIE%3E27143138%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27143138&rft_id=info:pmid/18267519&rft_ieee_id=777085&rfr_iscdi=true |