The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments
Presents the theory, design principles, implementation and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system. In addition, this document presents the rationale, design and results of psychophysical experiments that were conducted to address some key issues tha...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2000-01, Vol.9 (1), p.20-37 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 1 |
container_start_page | 20 |
container_title | IEEE transactions on image processing |
container_volume | 9 |
creator | Cox, I.J. Miller, M.L. Minka, T.P. Papathomas, T.V. Yianilos, P.N. |
description | Presents the theory, design principles, implementation and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system. In addition, this document presents the rationale, design and results of psychophysical experiments that were conducted to address some key issues that arose during PicHunter's development. The PicHunter project makes four primary contributions to research on CBIR. First, PicHunter represents a simple instance of a general Bayesian framework which we describe for using relevance feedback to direct a search. With an explicit model of what users would do, given the target image they want, PicHunter uses Bayes's rule to predict the target they want, given their actions. This is done via a probability distribution over possible image targets, rather than by refining a query. Second, an entropy-minimizing display algorithm is described that attempts to maximize the information obtained from a user at each iteration of the search. Third, PicHunter makes use of hidden annotation rather than a possibly inaccurate/inconsistent annotation structure that the user must learn and make queries in. Finally, PicHunter introduces two experimental paradigms to quantitatively evaluate the performance of the system, and psychophysical experiments are presented that support the theoretical claims. |
doi_str_mv | 10.1109/83.817596 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_18255370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>817596</ieee_id><sourcerecordid>914658572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-9ad6795828dde72e7d1b39962aba5e3d07ce79324663d795575f6a28f35f1de03</originalsourceid><addsrcrecordid>eNqF0UtLHEEUBeAiRJzRZJFtFqHJwiBMa70f7oxEDQi60HVT03U7U0O_UtUd7H9vDTNEcOGs6kJ99yzuQegLwWeEYHOu2ZkmShj5Ac2J4STHmNOPacZC5YpwM0NHMa4xJlwQeYhmRFMhmMJzVD2uIPtpJ4jetplv7B_IAgzBwz9bZ3GKAzSL7MGXt2M7QLjIhhV0YVok2tfQQDvYwXftIrOty_o4lauuX03Rl2kbnnsIfmPiJ3RQ2TrC5917jJ6ufz1e3eZ39ze_ry7v8pJTOuTGOqmM0FQ7B4qCcmTJjJHULq0A5rAqQRlGuZTMJSiUqKSlumKiIg4wO0Y_trl96P6OEIei8bGEurYtdGMsDOFSaKHoXqkY44IJqZI8eVdSLSVnmuyHilJD6Sbx-xu47sbQpsMUWnMtGaMiodMtKkMXY4Cq6NMxbZgKgotN7YVmxbb2ZL_tAsdlA-5V7npO4OsWeAD4_73bfgFJCK7n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884863325</pqid></control><display><type>article</type><title>The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments</title><source>IEEE Electronic Library (IEL)</source><creator>Cox, I.J. ; Miller, M.L. ; Minka, T.P. ; Papathomas, T.V. ; Yianilos, P.N.</creator><creatorcontrib>Cox, I.J. ; Miller, M.L. ; Minka, T.P. ; Papathomas, T.V. ; Yianilos, P.N.</creatorcontrib><description>Presents the theory, design principles, implementation and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system. In addition, this document presents the rationale, design and results of psychophysical experiments that were conducted to address some key issues that arose during PicHunter's development. The PicHunter project makes four primary contributions to research on CBIR. First, PicHunter represents a simple instance of a general Bayesian framework which we describe for using relevance feedback to direct a search. With an explicit model of what users would do, given the target image they want, PicHunter uses Bayes's rule to predict the target they want, given their actions. This is done via a probability distribution over possible image targets, rather than by refining a query. Second, an entropy-minimizing display algorithm is described that attempts to maximize the information obtained from a user at each iteration of the search. Third, PicHunter makes use of hidden annotation rather than a possibly inaccurate/inconsistent annotation structure that the user must learn and make queries in. Finally, PicHunter introduces two experimental paradigms to quantitatively evaluate the performance of the system, and psychophysical experiments are presented that support the theoretical claims.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.817596</identifier><identifier>PMID: 18255370</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; Bayesian analysis ; Bayesian methods ; Content based retrieval ; Design engineering ; Experiments ; Feedback ; Image databases ; Image retrieval ; Information retrieval ; Laboratories ; Mathematical models ; Predictive models ; Prototypes ; Psychology ; Query processing ; Retrieval ; Searching ; Studies</subject><ispartof>IEEE transactions on image processing, 2000-01, Vol.9 (1), p.20-37</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-9ad6795828dde72e7d1b39962aba5e3d07ce79324663d795575f6a28f35f1de03</citedby><cites>FETCH-LOGICAL-c422t-9ad6795828dde72e7d1b39962aba5e3d07ce79324663d795575f6a28f35f1de03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/817596$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/817596$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18255370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cox, I.J.</creatorcontrib><creatorcontrib>Miller, M.L.</creatorcontrib><creatorcontrib>Minka, T.P.</creatorcontrib><creatorcontrib>Papathomas, T.V.</creatorcontrib><creatorcontrib>Yianilos, P.N.</creatorcontrib><title>The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Presents the theory, design principles, implementation and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system. In addition, this document presents the rationale, design and results of psychophysical experiments that were conducted to address some key issues that arose during PicHunter's development. The PicHunter project makes four primary contributions to research on CBIR. First, PicHunter represents a simple instance of a general Bayesian framework which we describe for using relevance feedback to direct a search. With an explicit model of what users would do, given the target image they want, PicHunter uses Bayes's rule to predict the target they want, given their actions. This is done via a probability distribution over possible image targets, rather than by refining a query. Second, an entropy-minimizing display algorithm is described that attempts to maximize the information obtained from a user at each iteration of the search. Third, PicHunter makes use of hidden annotation rather than a possibly inaccurate/inconsistent annotation structure that the user must learn and make queries in. Finally, PicHunter introduces two experimental paradigms to quantitatively evaluate the performance of the system, and psychophysical experiments are presented that support the theoretical claims.</description><subject>Annotations</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Content based retrieval</subject><subject>Design engineering</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Image databases</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Predictive models</subject><subject>Prototypes</subject><subject>Psychology</subject><subject>Query processing</subject><subject>Retrieval</subject><subject>Searching</subject><subject>Studies</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLHEEUBeAiRJzRZJFtFqHJwiBMa70f7oxEDQi60HVT03U7U0O_UtUd7H9vDTNEcOGs6kJ99yzuQegLwWeEYHOu2ZkmShj5Ac2J4STHmNOPacZC5YpwM0NHMa4xJlwQeYhmRFMhmMJzVD2uIPtpJ4jetplv7B_IAgzBwz9bZ3GKAzSL7MGXt2M7QLjIhhV0YVok2tfQQDvYwXftIrOty_o4lauuX03Rl2kbnnsIfmPiJ3RQ2TrC5917jJ6ufz1e3eZ39ze_ry7v8pJTOuTGOqmM0FQ7B4qCcmTJjJHULq0A5rAqQRlGuZTMJSiUqKSlumKiIg4wO0Y_trl96P6OEIei8bGEurYtdGMsDOFSaKHoXqkY44IJqZI8eVdSLSVnmuyHilJD6Sbx-xu47sbQpsMUWnMtGaMiodMtKkMXY4Cq6NMxbZgKgotN7YVmxbb2ZL_tAsdlA-5V7npO4OsWeAD4_73bfgFJCK7n</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Cox, I.J.</creator><creator>Miller, M.L.</creator><creator>Minka, T.P.</creator><creator>Papathomas, T.V.</creator><creator>Yianilos, P.N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200001</creationdate><title>The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments</title><author>Cox, I.J. ; Miller, M.L. ; Minka, T.P. ; Papathomas, T.V. ; Yianilos, P.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-9ad6795828dde72e7d1b39962aba5e3d07ce79324663d795575f6a28f35f1de03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Annotations</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Content based retrieval</topic><topic>Design engineering</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Image databases</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Predictive models</topic><topic>Prototypes</topic><topic>Psychology</topic><topic>Query processing</topic><topic>Retrieval</topic><topic>Searching</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cox, I.J.</creatorcontrib><creatorcontrib>Miller, M.L.</creatorcontrib><creatorcontrib>Minka, T.P.</creatorcontrib><creatorcontrib>Papathomas, T.V.</creatorcontrib><creatorcontrib>Yianilos, P.N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cox, I.J.</au><au>Miller, M.L.</au><au>Minka, T.P.</au><au>Papathomas, T.V.</au><au>Yianilos, P.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2000-01</date><risdate>2000</risdate><volume>9</volume><issue>1</issue><spage>20</spage><epage>37</epage><pages>20-37</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Presents the theory, design principles, implementation and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system. In addition, this document presents the rationale, design and results of psychophysical experiments that were conducted to address some key issues that arose during PicHunter's development. The PicHunter project makes four primary contributions to research on CBIR. First, PicHunter represents a simple instance of a general Bayesian framework which we describe for using relevance feedback to direct a search. With an explicit model of what users would do, given the target image they want, PicHunter uses Bayes's rule to predict the target they want, given their actions. This is done via a probability distribution over possible image targets, rather than by refining a query. Second, an entropy-minimizing display algorithm is described that attempts to maximize the information obtained from a user at each iteration of the search. Third, PicHunter makes use of hidden annotation rather than a possibly inaccurate/inconsistent annotation structure that the user must learn and make queries in. Finally, PicHunter introduces two experimental paradigms to quantitatively evaluate the performance of the system, and psychophysical experiments are presented that support the theoretical claims.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18255370</pmid><doi>10.1109/83.817596</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2000-01, Vol.9 (1), p.20-37 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_pubmed_primary_18255370 |
source | IEEE Electronic Library (IEL) |
subjects | Annotations Bayesian analysis Bayesian methods Content based retrieval Design engineering Experiments Feedback Image databases Image retrieval Information retrieval Laboratories Mathematical models Predictive models Prototypes Psychology Query processing Retrieval Searching Studies |
title | The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Bayesian%20image%20retrieval%20system,%20PicHunter:%20theory,%20implementation,%20and%20psychophysical%20experiments&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Cox,%20I.J.&rft.date=2000-01&rft.volume=9&rft.issue=1&rft.spage=20&rft.epage=37&rft.pages=20-37&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.817596&rft_dat=%3Cproquest_RIE%3E914658572%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884863325&rft_id=info:pmid/18255370&rft_ieee_id=817596&rfr_iscdi=true |