The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments

Presents the theory, design principles, implementation and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system. In addition, this document presents the rationale, design and results of psychophysical experiments that were conducted to address some key issues tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2000-01, Vol.9 (1), p.20-37
Hauptverfasser: Cox, I.J., Miller, M.L., Minka, T.P., Papathomas, T.V., Yianilos, P.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 20
container_title IEEE transactions on image processing
container_volume 9
creator Cox, I.J.
Miller, M.L.
Minka, T.P.
Papathomas, T.V.
Yianilos, P.N.
description Presents the theory, design principles, implementation and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system. In addition, this document presents the rationale, design and results of psychophysical experiments that were conducted to address some key issues that arose during PicHunter's development. The PicHunter project makes four primary contributions to research on CBIR. First, PicHunter represents a simple instance of a general Bayesian framework which we describe for using relevance feedback to direct a search. With an explicit model of what users would do, given the target image they want, PicHunter uses Bayes's rule to predict the target they want, given their actions. This is done via a probability distribution over possible image targets, rather than by refining a query. Second, an entropy-minimizing display algorithm is described that attempts to maximize the information obtained from a user at each iteration of the search. Third, PicHunter makes use of hidden annotation rather than a possibly inaccurate/inconsistent annotation structure that the user must learn and make queries in. Finally, PicHunter introduces two experimental paradigms to quantitatively evaluate the performance of the system, and psychophysical experiments are presented that support the theoretical claims.
doi_str_mv 10.1109/83.817596
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_18255370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>817596</ieee_id><sourcerecordid>914658572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-9ad6795828dde72e7d1b39962aba5e3d07ce79324663d795575f6a28f35f1de03</originalsourceid><addsrcrecordid>eNqF0UtLHEEUBeAiRJzRZJFtFqHJwiBMa70f7oxEDQi60HVT03U7U0O_UtUd7H9vDTNEcOGs6kJ99yzuQegLwWeEYHOu2ZkmShj5Ac2J4STHmNOPacZC5YpwM0NHMa4xJlwQeYhmRFMhmMJzVD2uIPtpJ4jetplv7B_IAgzBwz9bZ3GKAzSL7MGXt2M7QLjIhhV0YVok2tfQQDvYwXftIrOty_o4lauuX03Rl2kbnnsIfmPiJ3RQ2TrC5917jJ6ufz1e3eZ39ze_ry7v8pJTOuTGOqmM0FQ7B4qCcmTJjJHULq0A5rAqQRlGuZTMJSiUqKSlumKiIg4wO0Y_trl96P6OEIei8bGEurYtdGMsDOFSaKHoXqkY44IJqZI8eVdSLSVnmuyHilJD6Sbx-xu47sbQpsMUWnMtGaMiodMtKkMXY4Cq6NMxbZgKgotN7YVmxbb2ZL_tAsdlA-5V7npO4OsWeAD4_73bfgFJCK7n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884863325</pqid></control><display><type>article</type><title>The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments</title><source>IEEE Electronic Library (IEL)</source><creator>Cox, I.J. ; Miller, M.L. ; Minka, T.P. ; Papathomas, T.V. ; Yianilos, P.N.</creator><creatorcontrib>Cox, I.J. ; Miller, M.L. ; Minka, T.P. ; Papathomas, T.V. ; Yianilos, P.N.</creatorcontrib><description>Presents the theory, design principles, implementation and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system. In addition, this document presents the rationale, design and results of psychophysical experiments that were conducted to address some key issues that arose during PicHunter's development. The PicHunter project makes four primary contributions to research on CBIR. First, PicHunter represents a simple instance of a general Bayesian framework which we describe for using relevance feedback to direct a search. With an explicit model of what users would do, given the target image they want, PicHunter uses Bayes's rule to predict the target they want, given their actions. This is done via a probability distribution over possible image targets, rather than by refining a query. Second, an entropy-minimizing display algorithm is described that attempts to maximize the information obtained from a user at each iteration of the search. Third, PicHunter makes use of hidden annotation rather than a possibly inaccurate/inconsistent annotation structure that the user must learn and make queries in. Finally, PicHunter introduces two experimental paradigms to quantitatively evaluate the performance of the system, and psychophysical experiments are presented that support the theoretical claims.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.817596</identifier><identifier>PMID: 18255370</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Annotations ; Bayesian analysis ; Bayesian methods ; Content based retrieval ; Design engineering ; Experiments ; Feedback ; Image databases ; Image retrieval ; Information retrieval ; Laboratories ; Mathematical models ; Predictive models ; Prototypes ; Psychology ; Query processing ; Retrieval ; Searching ; Studies</subject><ispartof>IEEE transactions on image processing, 2000-01, Vol.9 (1), p.20-37</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-9ad6795828dde72e7d1b39962aba5e3d07ce79324663d795575f6a28f35f1de03</citedby><cites>FETCH-LOGICAL-c422t-9ad6795828dde72e7d1b39962aba5e3d07ce79324663d795575f6a28f35f1de03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/817596$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/817596$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18255370$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cox, I.J.</creatorcontrib><creatorcontrib>Miller, M.L.</creatorcontrib><creatorcontrib>Minka, T.P.</creatorcontrib><creatorcontrib>Papathomas, T.V.</creatorcontrib><creatorcontrib>Yianilos, P.N.</creatorcontrib><title>The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Presents the theory, design principles, implementation and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system. In addition, this document presents the rationale, design and results of psychophysical experiments that were conducted to address some key issues that arose during PicHunter's development. The PicHunter project makes four primary contributions to research on CBIR. First, PicHunter represents a simple instance of a general Bayesian framework which we describe for using relevance feedback to direct a search. With an explicit model of what users would do, given the target image they want, PicHunter uses Bayes's rule to predict the target they want, given their actions. This is done via a probability distribution over possible image targets, rather than by refining a query. Second, an entropy-minimizing display algorithm is described that attempts to maximize the information obtained from a user at each iteration of the search. Third, PicHunter makes use of hidden annotation rather than a possibly inaccurate/inconsistent annotation structure that the user must learn and make queries in. Finally, PicHunter introduces two experimental paradigms to quantitatively evaluate the performance of the system, and psychophysical experiments are presented that support the theoretical claims.</description><subject>Annotations</subject><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Content based retrieval</subject><subject>Design engineering</subject><subject>Experiments</subject><subject>Feedback</subject><subject>Image databases</subject><subject>Image retrieval</subject><subject>Information retrieval</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Predictive models</subject><subject>Prototypes</subject><subject>Psychology</subject><subject>Query processing</subject><subject>Retrieval</subject><subject>Searching</subject><subject>Studies</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLHEEUBeAiRJzRZJFtFqHJwiBMa70f7oxEDQi60HVT03U7U0O_UtUd7H9vDTNEcOGs6kJ99yzuQegLwWeEYHOu2ZkmShj5Ac2J4STHmNOPacZC5YpwM0NHMa4xJlwQeYhmRFMhmMJzVD2uIPtpJ4jetplv7B_IAgzBwz9bZ3GKAzSL7MGXt2M7QLjIhhV0YVok2tfQQDvYwXftIrOty_o4lauuX03Rl2kbnnsIfmPiJ3RQ2TrC5917jJ6ufz1e3eZ39ze_ry7v8pJTOuTGOqmM0FQ7B4qCcmTJjJHULq0A5rAqQRlGuZTMJSiUqKSlumKiIg4wO0Y_trl96P6OEIei8bGEurYtdGMsDOFSaKHoXqkY44IJqZI8eVdSLSVnmuyHilJD6Sbx-xu47sbQpsMUWnMtGaMiodMtKkMXY4Cq6NMxbZgKgotN7YVmxbb2ZL_tAsdlA-5V7npO4OsWeAD4_73bfgFJCK7n</recordid><startdate>200001</startdate><enddate>200001</enddate><creator>Cox, I.J.</creator><creator>Miller, M.L.</creator><creator>Minka, T.P.</creator><creator>Papathomas, T.V.</creator><creator>Yianilos, P.N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200001</creationdate><title>The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments</title><author>Cox, I.J. ; Miller, M.L. ; Minka, T.P. ; Papathomas, T.V. ; Yianilos, P.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-9ad6795828dde72e7d1b39962aba5e3d07ce79324663d795575f6a28f35f1de03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Annotations</topic><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Content based retrieval</topic><topic>Design engineering</topic><topic>Experiments</topic><topic>Feedback</topic><topic>Image databases</topic><topic>Image retrieval</topic><topic>Information retrieval</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Predictive models</topic><topic>Prototypes</topic><topic>Psychology</topic><topic>Query processing</topic><topic>Retrieval</topic><topic>Searching</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cox, I.J.</creatorcontrib><creatorcontrib>Miller, M.L.</creatorcontrib><creatorcontrib>Minka, T.P.</creatorcontrib><creatorcontrib>Papathomas, T.V.</creatorcontrib><creatorcontrib>Yianilos, P.N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cox, I.J.</au><au>Miller, M.L.</au><au>Minka, T.P.</au><au>Papathomas, T.V.</au><au>Yianilos, P.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2000-01</date><risdate>2000</risdate><volume>9</volume><issue>1</issue><spage>20</spage><epage>37</epage><pages>20-37</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Presents the theory, design principles, implementation and performance results of PicHunter, a prototype content-based image retrieval (CBIR) system. In addition, this document presents the rationale, design and results of psychophysical experiments that were conducted to address some key issues that arose during PicHunter's development. The PicHunter project makes four primary contributions to research on CBIR. First, PicHunter represents a simple instance of a general Bayesian framework which we describe for using relevance feedback to direct a search. With an explicit model of what users would do, given the target image they want, PicHunter uses Bayes's rule to predict the target they want, given their actions. This is done via a probability distribution over possible image targets, rather than by refining a query. Second, an entropy-minimizing display algorithm is described that attempts to maximize the information obtained from a user at each iteration of the search. Third, PicHunter makes use of hidden annotation rather than a possibly inaccurate/inconsistent annotation structure that the user must learn and make queries in. Finally, PicHunter introduces two experimental paradigms to quantitatively evaluate the performance of the system, and psychophysical experiments are presented that support the theoretical claims.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18255370</pmid><doi>10.1109/83.817596</doi><tpages>18</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2000-01, Vol.9 (1), p.20-37
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_18255370
source IEEE Electronic Library (IEL)
subjects Annotations
Bayesian analysis
Bayesian methods
Content based retrieval
Design engineering
Experiments
Feedback
Image databases
Image retrieval
Information retrieval
Laboratories
Mathematical models
Predictive models
Prototypes
Psychology
Query processing
Retrieval
Searching
Studies
title The Bayesian image retrieval system, PicHunter: theory, implementation, and psychophysical experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A01%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Bayesian%20image%20retrieval%20system,%20PicHunter:%20theory,%20implementation,%20and%20psychophysical%20experiments&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Cox,%20I.J.&rft.date=2000-01&rft.volume=9&rft.issue=1&rft.spage=20&rft.epage=37&rft.pages=20-37&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.817596&rft_dat=%3Cproquest_RIE%3E914658572%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884863325&rft_id=info:pmid/18255370&rft_ieee_id=817596&rfr_iscdi=true