Blind separation of signals with mixed kurtosis signs using threshold activation functions
A parameterized activation function in the form of an adaptive threshold for a single-layer neural network, which separates a mixture of signals with any distribution (except for Gaussian), is introduced. This activation function is particularly simple to implement, since it neither uses hyperbolic...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2001-05, Vol.12 (3), p.618-624 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 624 |
---|---|
container_issue | 3 |
container_start_page | 618 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 12 |
creator | Mathis, H. von Hoff, T.P. Joho, M. |
description | A parameterized activation function in the form of an adaptive threshold for a single-layer neural network, which separates a mixture of signals with any distribution (except for Gaussian), is introduced. This activation function is particularly simple to implement, since it neither uses hyperbolic nor polynomial functions, unlike most other nonlinear functions used for blind separation. For some specific distributions, the stable region of the threshold parameter is derived, and optimal values for best separation performance are given. If the threshold parameter is made adaptive during the separation process, the successful separation of signals whose distribution is unknown is demonstrated and compared against other known methods. |
doi_str_mv | 10.1109/72.925565 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_18249895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>925565</ieee_id><sourcerecordid>2583003691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-28e4504691fdb227dbb3f2407f2c13b243d0226407039d5cab32b16b1624d0393</originalsourceid><addsrcrecordid>eNqF0UtLxDAQAOAgio_Vg1cPEjwoHqrJ5NUcdfEFghe9eCltk-5Gu-2atD7-vVm7KHhQCCTMfDMMGYR2KTmhlOhTBScahJBiBW1SzWlCiGar8U24SDSA2kBbITwRQrkgch1t0BS4TrXYRI_ntWsMDnae-7xzbYPbCgc3afI64DfXTfHMvVuDn3vftcGFr1zAfXDNBHdTb8O0rQ3Oy869DvVV35SLR9hGa1XsYneW9wg9XF7cj6-T27urm_HZbVJygC6B1MapuNS0MkWc1RQFq4ATVUFJWQGcGQIgY4AwbUSZFwwKKuMBbmKIjdDR0Hfu25fehi6buVDaus4b2_Yh05RLLkHBv1IxxhVQmkZ5-KeElCpJBfsfSsmIFiTCg1_wqe394pszDSSVinMe0fGASt-G4G2Vzb2b5f4joyRbrDpTkA2rjnZ_2bAvZtb8yOVuI9gbgLPWfqeX1Z-Tg6oD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920867444</pqid></control><display><type>article</type><title>Blind separation of signals with mixed kurtosis signs using threshold activation functions</title><source>IEEE Electronic Library Online</source><creator>Mathis, H. ; von Hoff, T.P. ; Joho, M.</creator><creatorcontrib>Mathis, H. ; von Hoff, T.P. ; Joho, M.</creatorcontrib><description>A parameterized activation function in the form of an adaptive threshold for a single-layer neural network, which separates a mixture of signals with any distribution (except for Gaussian), is introduced. This activation function is particularly simple to implement, since it neither uses hyperbolic nor polynomial functions, unlike most other nonlinear functions used for blind separation. For some specific distributions, the stable region of the threshold parameter is derived, and optimal values for best separation performance are given. If the threshold parameter is made adaptive during the separation process, the successful separation of signals whose distribution is unknown is demonstrated and compared against other known methods.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/72.925565</identifier><identifier>PMID: 18249895</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Activation ; Adaptive algorithm ; Blinds ; Equations ; Gaussian ; Higher order statistics ; Information processing ; Kurtosis ; Maximum likelihood estimation ; Neural networks ; Optimization ; Polynomials ; Separation ; Separation processes ; Signal processing ; Source separation ; Thresholds</subject><ispartof>IEEE transaction on neural networks and learning systems, 2001-05, Vol.12 (3), p.618-624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-28e4504691fdb227dbb3f2407f2c13b243d0226407039d5cab32b16b1624d0393</citedby><cites>FETCH-LOGICAL-c422t-28e4504691fdb227dbb3f2407f2c13b243d0226407039d5cab32b16b1624d0393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/925565$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/925565$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathis, H.</creatorcontrib><creatorcontrib>von Hoff, T.P.</creatorcontrib><creatorcontrib>Joho, M.</creatorcontrib><title>Blind separation of signals with mixed kurtosis signs using threshold activation functions</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>A parameterized activation function in the form of an adaptive threshold for a single-layer neural network, which separates a mixture of signals with any distribution (except for Gaussian), is introduced. This activation function is particularly simple to implement, since it neither uses hyperbolic nor polynomial functions, unlike most other nonlinear functions used for blind separation. For some specific distributions, the stable region of the threshold parameter is derived, and optimal values for best separation performance are given. If the threshold parameter is made adaptive during the separation process, the successful separation of signals whose distribution is unknown is demonstrated and compared against other known methods.</description><subject>Activation</subject><subject>Adaptive algorithm</subject><subject>Blinds</subject><subject>Equations</subject><subject>Gaussian</subject><subject>Higher order statistics</subject><subject>Information processing</subject><subject>Kurtosis</subject><subject>Maximum likelihood estimation</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Separation</subject><subject>Separation processes</subject><subject>Signal processing</subject><subject>Source separation</subject><subject>Thresholds</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLxDAQAOAgio_Vg1cPEjwoHqrJ5NUcdfEFghe9eCltk-5Gu-2atD7-vVm7KHhQCCTMfDMMGYR2KTmhlOhTBScahJBiBW1SzWlCiGar8U24SDSA2kBbITwRQrkgch1t0BS4TrXYRI_ntWsMDnae-7xzbYPbCgc3afI64DfXTfHMvVuDn3vftcGFr1zAfXDNBHdTb8O0rQ3Oy869DvVV35SLR9hGa1XsYneW9wg9XF7cj6-T27urm_HZbVJygC6B1MapuNS0MkWc1RQFq4ATVUFJWQGcGQIgY4AwbUSZFwwKKuMBbmKIjdDR0Hfu25fehi6buVDaus4b2_Yh05RLLkHBv1IxxhVQmkZ5-KeElCpJBfsfSsmIFiTCg1_wqe394pszDSSVinMe0fGASt-G4G2Vzb2b5f4joyRbrDpTkA2rjnZ_2bAvZtb8yOVuI9gbgLPWfqeX1Z-Tg6oD</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Mathis, H.</creator><creator>von Hoff, T.P.</creator><creator>Joho, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010501</creationdate><title>Blind separation of signals with mixed kurtosis signs using threshold activation functions</title><author>Mathis, H. ; von Hoff, T.P. ; Joho, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-28e4504691fdb227dbb3f2407f2c13b243d0226407039d5cab32b16b1624d0393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Activation</topic><topic>Adaptive algorithm</topic><topic>Blinds</topic><topic>Equations</topic><topic>Gaussian</topic><topic>Higher order statistics</topic><topic>Information processing</topic><topic>Kurtosis</topic><topic>Maximum likelihood estimation</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Separation</topic><topic>Separation processes</topic><topic>Signal processing</topic><topic>Source separation</topic><topic>Thresholds</topic><toplevel>online_resources</toplevel><creatorcontrib>Mathis, H.</creatorcontrib><creatorcontrib>von Hoff, T.P.</creatorcontrib><creatorcontrib>Joho, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mathis, H.</au><au>von Hoff, T.P.</au><au>Joho, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind separation of signals with mixed kurtosis signs using threshold activation functions</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2001-05-01</date><risdate>2001</risdate><volume>12</volume><issue>3</issue><spage>618</spage><epage>624</epage><pages>618-624</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>A parameterized activation function in the form of an adaptive threshold for a single-layer neural network, which separates a mixture of signals with any distribution (except for Gaussian), is introduced. This activation function is particularly simple to implement, since it neither uses hyperbolic nor polynomial functions, unlike most other nonlinear functions used for blind separation. For some specific distributions, the stable region of the threshold parameter is derived, and optimal values for best separation performance are given. If the threshold parameter is made adaptive during the separation process, the successful separation of signals whose distribution is unknown is demonstrated and compared against other known methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18249895</pmid><doi>10.1109/72.925565</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transaction on neural networks and learning systems, 2001-05, Vol.12 (3), p.618-624 |
issn | 1045-9227 2162-237X 1941-0093 2162-2388 |
language | eng |
recordid | cdi_pubmed_primary_18249895 |
source | IEEE Electronic Library Online |
subjects | Activation Adaptive algorithm Blinds Equations Gaussian Higher order statistics Information processing Kurtosis Maximum likelihood estimation Neural networks Optimization Polynomials Separation Separation processes Signal processing Source separation Thresholds |
title | Blind separation of signals with mixed kurtosis signs using threshold activation functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20separation%20of%20signals%20with%20mixed%20kurtosis%20signs%20using%20threshold%20activation%20functions&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Mathis,%20H.&rft.date=2001-05-01&rft.volume=12&rft.issue=3&rft.spage=618&rft.epage=624&rft.pages=618-624&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.925565&rft_dat=%3Cproquest_RIE%3E2583003691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920867444&rft_id=info:pmid/18249895&rft_ieee_id=925565&rfr_iscdi=true |