Blind separation of signals with mixed kurtosis signs using threshold activation functions

A parameterized activation function in the form of an adaptive threshold for a single-layer neural network, which separates a mixture of signals with any distribution (except for Gaussian), is introduced. This activation function is particularly simple to implement, since it neither uses hyperbolic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2001-05, Vol.12 (3), p.618-624
Hauptverfasser: Mathis, H., von Hoff, T.P., Joho, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 624
container_issue 3
container_start_page 618
container_title IEEE transaction on neural networks and learning systems
container_volume 12
creator Mathis, H.
von Hoff, T.P.
Joho, M.
description A parameterized activation function in the form of an adaptive threshold for a single-layer neural network, which separates a mixture of signals with any distribution (except for Gaussian), is introduced. This activation function is particularly simple to implement, since it neither uses hyperbolic nor polynomial functions, unlike most other nonlinear functions used for blind separation. For some specific distributions, the stable region of the threshold parameter is derived, and optimal values for best separation performance are given. If the threshold parameter is made adaptive during the separation process, the successful separation of signals whose distribution is unknown is demonstrated and compared against other known methods.
doi_str_mv 10.1109/72.925565
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_18249895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>925565</ieee_id><sourcerecordid>2583003691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-28e4504691fdb227dbb3f2407f2c13b243d0226407039d5cab32b16b1624d0393</originalsourceid><addsrcrecordid>eNqF0UtLxDAQAOAgio_Vg1cPEjwoHqrJ5NUcdfEFghe9eCltk-5Gu-2atD7-vVm7KHhQCCTMfDMMGYR2KTmhlOhTBScahJBiBW1SzWlCiGar8U24SDSA2kBbITwRQrkgch1t0BS4TrXYRI_ntWsMDnae-7xzbYPbCgc3afI64DfXTfHMvVuDn3vftcGFr1zAfXDNBHdTb8O0rQ3Oy869DvVV35SLR9hGa1XsYneW9wg9XF7cj6-T27urm_HZbVJygC6B1MapuNS0MkWc1RQFq4ATVUFJWQGcGQIgY4AwbUSZFwwKKuMBbmKIjdDR0Hfu25fehi6buVDaus4b2_Yh05RLLkHBv1IxxhVQmkZ5-KeElCpJBfsfSsmIFiTCg1_wqe394pszDSSVinMe0fGASt-G4G2Vzb2b5f4joyRbrDpTkA2rjnZ_2bAvZtb8yOVuI9gbgLPWfqeX1Z-Tg6oD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920867444</pqid></control><display><type>article</type><title>Blind separation of signals with mixed kurtosis signs using threshold activation functions</title><source>IEEE Electronic Library Online</source><creator>Mathis, H. ; von Hoff, T.P. ; Joho, M.</creator><creatorcontrib>Mathis, H. ; von Hoff, T.P. ; Joho, M.</creatorcontrib><description>A parameterized activation function in the form of an adaptive threshold for a single-layer neural network, which separates a mixture of signals with any distribution (except for Gaussian), is introduced. This activation function is particularly simple to implement, since it neither uses hyperbolic nor polynomial functions, unlike most other nonlinear functions used for blind separation. For some specific distributions, the stable region of the threshold parameter is derived, and optimal values for best separation performance are given. If the threshold parameter is made adaptive during the separation process, the successful separation of signals whose distribution is unknown is demonstrated and compared against other known methods.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/72.925565</identifier><identifier>PMID: 18249895</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Activation ; Adaptive algorithm ; Blinds ; Equations ; Gaussian ; Higher order statistics ; Information processing ; Kurtosis ; Maximum likelihood estimation ; Neural networks ; Optimization ; Polynomials ; Separation ; Separation processes ; Signal processing ; Source separation ; Thresholds</subject><ispartof>IEEE transaction on neural networks and learning systems, 2001-05, Vol.12 (3), p.618-624</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-28e4504691fdb227dbb3f2407f2c13b243d0226407039d5cab32b16b1624d0393</citedby><cites>FETCH-LOGICAL-c422t-28e4504691fdb227dbb3f2407f2c13b243d0226407039d5cab32b16b1624d0393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/925565$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/925565$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249895$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mathis, H.</creatorcontrib><creatorcontrib>von Hoff, T.P.</creatorcontrib><creatorcontrib>Joho, M.</creatorcontrib><title>Blind separation of signals with mixed kurtosis signs using threshold activation functions</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>A parameterized activation function in the form of an adaptive threshold for a single-layer neural network, which separates a mixture of signals with any distribution (except for Gaussian), is introduced. This activation function is particularly simple to implement, since it neither uses hyperbolic nor polynomial functions, unlike most other nonlinear functions used for blind separation. For some specific distributions, the stable region of the threshold parameter is derived, and optimal values for best separation performance are given. If the threshold parameter is made adaptive during the separation process, the successful separation of signals whose distribution is unknown is demonstrated and compared against other known methods.</description><subject>Activation</subject><subject>Adaptive algorithm</subject><subject>Blinds</subject><subject>Equations</subject><subject>Gaussian</subject><subject>Higher order statistics</subject><subject>Information processing</subject><subject>Kurtosis</subject><subject>Maximum likelihood estimation</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Separation</subject><subject>Separation processes</subject><subject>Signal processing</subject><subject>Source separation</subject><subject>Thresholds</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0UtLxDAQAOAgio_Vg1cPEjwoHqrJ5NUcdfEFghe9eCltk-5Gu-2atD7-vVm7KHhQCCTMfDMMGYR2KTmhlOhTBScahJBiBW1SzWlCiGar8U24SDSA2kBbITwRQrkgch1t0BS4TrXYRI_ntWsMDnae-7xzbYPbCgc3afI64DfXTfHMvVuDn3vftcGFr1zAfXDNBHdTb8O0rQ3Oy869DvVV35SLR9hGa1XsYneW9wg9XF7cj6-T27urm_HZbVJygC6B1MapuNS0MkWc1RQFq4ATVUFJWQGcGQIgY4AwbUSZFwwKKuMBbmKIjdDR0Hfu25fehi6buVDaus4b2_Yh05RLLkHBv1IxxhVQmkZ5-KeElCpJBfsfSsmIFiTCg1_wqe394pszDSSVinMe0fGASt-G4G2Vzb2b5f4joyRbrDpTkA2rjnZ_2bAvZtb8yOVuI9gbgLPWfqeX1Z-Tg6oD</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Mathis, H.</creator><creator>von Hoff, T.P.</creator><creator>Joho, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010501</creationdate><title>Blind separation of signals with mixed kurtosis signs using threshold activation functions</title><author>Mathis, H. ; von Hoff, T.P. ; Joho, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-28e4504691fdb227dbb3f2407f2c13b243d0226407039d5cab32b16b1624d0393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Activation</topic><topic>Adaptive algorithm</topic><topic>Blinds</topic><topic>Equations</topic><topic>Gaussian</topic><topic>Higher order statistics</topic><topic>Information processing</topic><topic>Kurtosis</topic><topic>Maximum likelihood estimation</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Separation</topic><topic>Separation processes</topic><topic>Signal processing</topic><topic>Source separation</topic><topic>Thresholds</topic><toplevel>online_resources</toplevel><creatorcontrib>Mathis, H.</creatorcontrib><creatorcontrib>von Hoff, T.P.</creatorcontrib><creatorcontrib>Joho, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mathis, H.</au><au>von Hoff, T.P.</au><au>Joho, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind separation of signals with mixed kurtosis signs using threshold activation functions</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2001-05-01</date><risdate>2001</risdate><volume>12</volume><issue>3</issue><spage>618</spage><epage>624</epage><pages>618-624</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>A parameterized activation function in the form of an adaptive threshold for a single-layer neural network, which separates a mixture of signals with any distribution (except for Gaussian), is introduced. This activation function is particularly simple to implement, since it neither uses hyperbolic nor polynomial functions, unlike most other nonlinear functions used for blind separation. For some specific distributions, the stable region of the threshold parameter is derived, and optimal values for best separation performance are given. If the threshold parameter is made adaptive during the separation process, the successful separation of signals whose distribution is unknown is demonstrated and compared against other known methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18249895</pmid><doi>10.1109/72.925565</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2001-05, Vol.12 (3), p.618-624
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_pubmed_primary_18249895
source IEEE Electronic Library Online
subjects Activation
Adaptive algorithm
Blinds
Equations
Gaussian
Higher order statistics
Information processing
Kurtosis
Maximum likelihood estimation
Neural networks
Optimization
Polynomials
Separation
Separation processes
Signal processing
Source separation
Thresholds
title Blind separation of signals with mixed kurtosis signs using threshold activation functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20separation%20of%20signals%20with%20mixed%20kurtosis%20signs%20using%20threshold%20activation%20functions&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Mathis,%20H.&rft.date=2001-05-01&rft.volume=12&rft.issue=3&rft.spage=618&rft.epage=624&rft.pages=618-624&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.925565&rft_dat=%3Cproquest_RIE%3E2583003691%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920867444&rft_id=info:pmid/18249895&rft_ieee_id=925565&rfr_iscdi=true