Applying a PC accelerator board for medical imaging

An AT-compatible computer was used to expand X-ray images that had been compressed and stored on optical data cards. Initially, execution time for expansion of a single X-ray image was 25 min. The requirements were for an expansion time of under 10 s and costs of under 1000 for computing hardware. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE engineering in medicine and biology magazine 1990-09, Vol.9 (3), p.61-63
Hauptverfasser: Gray, J., Grenzow, F., Siedband, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 3
container_start_page 61
container_title IEEE engineering in medicine and biology magazine
container_volume 9
creator Gray, J.
Grenzow, F.
Siedband, M.
description An AT-compatible computer was used to expand X-ray images that had been compressed and stored on optical data cards. Initially, execution time for expansion of a single X-ray image was 25 min. The requirements were for an expansion time of under 10 s and costs of under 1000 for computing hardware. This meant a computational speed increase of over 150 times was needed. Tests showed that incorporating an 80287 coprocessor would only give a speed increase of five times. The DSP32-PC-160 floating-point accelerator board was selected as a cost-effective solution to the need for more computing power. This board provided adequate processor speed, onboard memory, and data bus width; floating-point math precision; and a high-level language compiler for code development.< >
doi_str_mv 10.1109/51.59216
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_18238350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>59216</ieee_id><sourcerecordid>734247043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-f7f3a2e207b9b3acca37ad6c4c31cd5103339b22192065b4ce22827889ae538e3</originalsourceid><addsrcrecordid>eNp90D1PwzAQBmAPIFoKEisLygQsKfadXcdjVfElVYIBZstxLlVQ2gS7HfrvMaSCDS-25Mevzi9jF4JPheDmTompMiBmR2zMNZpcCa1G7DTGD86FlFqdsJEoAAtUfMxw3vftvtmsMpe9LjLnPbUU3LYLWdm5UGV1Oq2parxrs2btVomesePatZHOD_uEvT_cvy2e8uXL4_Nivsw9GL7Na12jAwKuS1NiSnaoXTXz0qPwlRIcEU0JIAzwmSqlJ4ACdFEYRwoLwgm7GXL70H3uKG7tuolpvtZtqNtFq1GC1Fxiktf_Sih0WgYSvB2gD12MgWrbh_SrsLeC2-_6rBL2p75Erw6ZuzIV8AcP3SVwOYCGiH6vh8dff19xqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28777792</pqid></control><display><type>article</type><title>Applying a PC accelerator board for medical imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Gray, J. ; Grenzow, F. ; Siedband, M.</creator><creatorcontrib>Gray, J. ; Grenzow, F. ; Siedband, M.</creatorcontrib><description>An AT-compatible computer was used to expand X-ray images that had been compressed and stored on optical data cards. Initially, execution time for expansion of a single X-ray image was 25 min. The requirements were for an expansion time of under 10 s and costs of under 1000 for computing hardware. This meant a computational speed increase of over 150 times was needed. Tests showed that incorporating an 80287 coprocessor would only give a speed increase of five times. The DSP32-PC-160 floating-point accelerator board was selected as a cost-effective solution to the need for more computing power. This board provided adequate processor speed, onboard memory, and data bus width; floating-point math precision; and a high-level language compiler for code development.&lt; &gt;</description><identifier>ISSN: 0739-5175</identifier><identifier>DOI: 10.1109/51.59216</identifier><identifier>PMID: 18238350</identifier><identifier>CODEN: IEMBDE</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Biomedical imaging ; Biomedical optical imaging ; Coprocessors ; Costs ; Hardware ; High level languages ; Image coding ; Optical computing ; Testing ; X-ray imaging</subject><ispartof>IEEE engineering in medicine and biology magazine, 1990-09, Vol.9 (3), p.61-63</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c290t-f7f3a2e207b9b3acca37ad6c4c31cd5103339b22192065b4ce22827889ae538e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/59216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/59216$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18238350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gray, J.</creatorcontrib><creatorcontrib>Grenzow, F.</creatorcontrib><creatorcontrib>Siedband, M.</creatorcontrib><title>Applying a PC accelerator board for medical imaging</title><title>IEEE engineering in medicine and biology magazine</title><addtitle>EMB-M</addtitle><addtitle>IEEE Eng Med Biol Mag</addtitle><description>An AT-compatible computer was used to expand X-ray images that had been compressed and stored on optical data cards. Initially, execution time for expansion of a single X-ray image was 25 min. The requirements were for an expansion time of under 10 s and costs of under 1000 for computing hardware. This meant a computational speed increase of over 150 times was needed. Tests showed that incorporating an 80287 coprocessor would only give a speed increase of five times. The DSP32-PC-160 floating-point accelerator board was selected as a cost-effective solution to the need for more computing power. This board provided adequate processor speed, onboard memory, and data bus width; floating-point math precision; and a high-level language compiler for code development.&lt; &gt;</description><subject>Biomedical imaging</subject><subject>Biomedical optical imaging</subject><subject>Coprocessors</subject><subject>Costs</subject><subject>Hardware</subject><subject>High level languages</subject><subject>Image coding</subject><subject>Optical computing</subject><subject>Testing</subject><subject>X-ray imaging</subject><issn>0739-5175</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp90D1PwzAQBmAPIFoKEisLygQsKfadXcdjVfElVYIBZstxLlVQ2gS7HfrvMaSCDS-25Mevzi9jF4JPheDmTompMiBmR2zMNZpcCa1G7DTGD86FlFqdsJEoAAtUfMxw3vftvtmsMpe9LjLnPbUU3LYLWdm5UGV1Oq2parxrs2btVomesePatZHOD_uEvT_cvy2e8uXL4_Nivsw9GL7Na12jAwKuS1NiSnaoXTXz0qPwlRIcEU0JIAzwmSqlJ4ACdFEYRwoLwgm7GXL70H3uKG7tuolpvtZtqNtFq1GC1Fxiktf_Sih0WgYSvB2gD12MgWrbh_SrsLeC2-_6rBL2p75Erw6ZuzIV8AcP3SVwOYCGiH6vh8dff19xqQ</recordid><startdate>19900901</startdate><enddate>19900901</enddate><creator>Gray, J.</creator><creator>Grenzow, F.</creator><creator>Siedband, M.</creator><general>IEEE</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>19900901</creationdate><title>Applying a PC accelerator board for medical imaging</title><author>Gray, J. ; Grenzow, F. ; Siedband, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-f7f3a2e207b9b3acca37ad6c4c31cd5103339b22192065b4ce22827889ae538e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Biomedical imaging</topic><topic>Biomedical optical imaging</topic><topic>Coprocessors</topic><topic>Costs</topic><topic>Hardware</topic><topic>High level languages</topic><topic>Image coding</topic><topic>Optical computing</topic><topic>Testing</topic><topic>X-ray imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Gray, J.</creatorcontrib><creatorcontrib>Grenzow, F.</creatorcontrib><creatorcontrib>Siedband, M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE engineering in medicine and biology magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gray, J.</au><au>Grenzow, F.</au><au>Siedband, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying a PC accelerator board for medical imaging</atitle><jtitle>IEEE engineering in medicine and biology magazine</jtitle><stitle>EMB-M</stitle><addtitle>IEEE Eng Med Biol Mag</addtitle><date>1990-09-01</date><risdate>1990</risdate><volume>9</volume><issue>3</issue><spage>61</spage><epage>63</epage><pages>61-63</pages><issn>0739-5175</issn><coden>IEMBDE</coden><abstract>An AT-compatible computer was used to expand X-ray images that had been compressed and stored on optical data cards. Initially, execution time for expansion of a single X-ray image was 25 min. The requirements were for an expansion time of under 10 s and costs of under 1000 for computing hardware. This meant a computational speed increase of over 150 times was needed. Tests showed that incorporating an 80287 coprocessor would only give a speed increase of five times. The DSP32-PC-160 floating-point accelerator board was selected as a cost-effective solution to the need for more computing power. This board provided adequate processor speed, onboard memory, and data bus width; floating-point math precision; and a high-level language compiler for code development.&lt; &gt;</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18238350</pmid><doi>10.1109/51.59216</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0739-5175
ispartof IEEE engineering in medicine and biology magazine, 1990-09, Vol.9 (3), p.61-63
issn 0739-5175
language eng
recordid cdi_pubmed_primary_18238350
source IEEE Electronic Library (IEL)
subjects Biomedical imaging
Biomedical optical imaging
Coprocessors
Costs
Hardware
High level languages
Image coding
Optical computing
Testing
X-ray imaging
title Applying a PC accelerator board for medical imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A30%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20a%20PC%20accelerator%20board%20for%20medical%20imaging&rft.jtitle=IEEE%20engineering%20in%20medicine%20and%20biology%20magazine&rft.au=Gray,%20J.&rft.date=1990-09-01&rft.volume=9&rft.issue=3&rft.spage=61&rft.epage=63&rft.pages=61-63&rft.issn=0739-5175&rft.coden=IEMBDE&rft_id=info:doi/10.1109/51.59216&rft_dat=%3Cproquest_RIE%3E734247043%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28777792&rft_id=info:pmid/18238350&rft_ieee_id=59216&rfr_iscdi=true