Discrete-time event history analysis using segmented hazards

Event history analysis is a means of explaining variation in the timing of events in individual life histories. This article describes methods for overcoming two difficult problems likely to be encountered in applications of event history analysis to studies of aging and human development. First, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental aging research 1991-12, Vol.17 (4), p.251-260
Hauptverfasser: Gardner, William, Meyer, Marion, Ketterlinus, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 4
container_start_page 251
container_title Experimental aging research
container_volume 17
creator Gardner, William
Meyer, Marion
Ketterlinus, Robert
description Event history analysis is a means of explaining variation in the timing of events in individual life histories. This article describes methods for overcoming two difficult problems likely to be encountered in applications of event history analysis to studies of aging and human development. First, in many studies the ages of occurrence of critical life events are recorded in discrete units such as years, but the probability distributions of life events are usually specified in continuous-time form. We show how to estimate models for discrete-time data based on an underlying continuous-time specification. Second, the standard distributions for life events often fail to capture the complex age-dependence seen in actual data. We show how to construct a model using segmented hazards, that is, a composite of different functions for different segments of time. To illustrate these points, we study the age of first intercourse of 11,883 subjects from the National Longitudinal Study of Youth.
doi_str_mv 10.1080/03610739108253902
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_1820290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72747147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-5a8c87017bbeaaaea34c2a7385da134a177c262ab9d57e362445ee11a64052783</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRaq3-ABdCVu6id16ZBLqR-oSCGwV3w01y00byqDOpEn-9KSm4EFeXw3fO4XIYO-dwxSGGa5ARByOTQQgtExAHbMohiUIVaXPIpjseDoa3Y3bi_TsAaMnlhE14LEAkMGXz29JnjjoKu7KmgD6p6YJ16bvW9QE2WPW-9MHWl80q8LSqB0x5sMZvdLk_ZUcFVp7O9nfGXu_vXhaP4fL54WlxswwzCbwLNcZZbICbNCVEJJQqE2hkrHPkUiE3JhORwDTJtSEZCaU0EecYKdDCxHLGLsfejWs_tuQ7Ww9fU1VhQ-3WWyOMMlyZwchHY-Za7x0VduPKGl1vOdjdYvbPYkPmYl--TWvKfxPjRAOfj7xsitbV-NW6Krcd9lXrCodNVnor_6__AaL6eEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72747147</pqid></control><display><type>article</type><title>Discrete-time event history analysis using segmented hazards</title><source>MEDLINE</source><source>Taylor &amp; Francis Journals Complete</source><creator>Gardner, William ; Meyer, Marion ; Ketterlinus, Robert</creator><creatorcontrib>Gardner, William ; Meyer, Marion ; Ketterlinus, Robert</creatorcontrib><description>Event history analysis is a means of explaining variation in the timing of events in individual life histories. This article describes methods for overcoming two difficult problems likely to be encountered in applications of event history analysis to studies of aging and human development. First, in many studies the ages of occurrence of critical life events are recorded in discrete units such as years, but the probability distributions of life events are usually specified in continuous-time form. We show how to estimate models for discrete-time data based on an underlying continuous-time specification. Second, the standard distributions for life events often fail to capture the complex age-dependence seen in actual data. We show how to construct a model using segmented hazards, that is, a composite of different functions for different segments of time. To illustrate these points, we study the age of first intercourse of 11,883 subjects from the National Longitudinal Study of Youth.</description><identifier>ISSN: 0361-073X</identifier><identifier>EISSN: 1096-4657</identifier><identifier>DOI: 10.1080/03610739108253902</identifier><identifier>PMID: 1820290</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis Group</publisher><subject>Adolescent ; Adult ; Age Factors ; Aged ; Aged, 80 and over ; Child ; Child, Preschool ; Computer Simulation ; Female ; Humans ; Infant ; Infant, Newborn ; Life Change Events ; Longitudinal Studies ; Male ; Middle Aged ; Models, Statistical ; Proportional Hazards Models ; Time</subject><ispartof>Experimental aging research, 1991-12, Vol.17 (4), p.251-260</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1991</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-5a8c87017bbeaaaea34c2a7385da134a177c262ab9d57e362445ee11a64052783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/03610739108253902$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/03610739108253902$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,59624,60413</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1820290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gardner, William</creatorcontrib><creatorcontrib>Meyer, Marion</creatorcontrib><creatorcontrib>Ketterlinus, Robert</creatorcontrib><title>Discrete-time event history analysis using segmented hazards</title><title>Experimental aging research</title><addtitle>Exp Aging Res</addtitle><description>Event history analysis is a means of explaining variation in the timing of events in individual life histories. This article describes methods for overcoming two difficult problems likely to be encountered in applications of event history analysis to studies of aging and human development. First, in many studies the ages of occurrence of critical life events are recorded in discrete units such as years, but the probability distributions of life events are usually specified in continuous-time form. We show how to estimate models for discrete-time data based on an underlying continuous-time specification. Second, the standard distributions for life events often fail to capture the complex age-dependence seen in actual data. We show how to construct a model using segmented hazards, that is, a composite of different functions for different segments of time. To illustrate these points, we study the age of first intercourse of 11,883 subjects from the National Longitudinal Study of Youth.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Age Factors</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Computer Simulation</subject><subject>Female</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Life Change Events</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Proportional Hazards Models</subject><subject>Time</subject><issn>0361-073X</issn><issn>1096-4657</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLw0AUhQdRaq3-ABdCVu6id16ZBLqR-oSCGwV3w01y00byqDOpEn-9KSm4EFeXw3fO4XIYO-dwxSGGa5ARByOTQQgtExAHbMohiUIVaXPIpjseDoa3Y3bi_TsAaMnlhE14LEAkMGXz29JnjjoKu7KmgD6p6YJ16bvW9QE2WPW-9MHWl80q8LSqB0x5sMZvdLk_ZUcFVp7O9nfGXu_vXhaP4fL54WlxswwzCbwLNcZZbICbNCVEJJQqE2hkrHPkUiE3JhORwDTJtSEZCaU0EecYKdDCxHLGLsfejWs_tuQ7Ww9fU1VhQ-3WWyOMMlyZwchHY-Za7x0VduPKGl1vOdjdYvbPYkPmYl--TWvKfxPjRAOfj7xsitbV-NW6Krcd9lXrCodNVnor_6__AaL6eEg</recordid><startdate>19911201</startdate><enddate>19911201</enddate><creator>Gardner, William</creator><creator>Meyer, Marion</creator><creator>Ketterlinus, Robert</creator><general>Taylor &amp; Francis Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19911201</creationdate><title>Discrete-time event history analysis using segmented hazards</title><author>Gardner, William ; Meyer, Marion ; Ketterlinus, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-5a8c87017bbeaaaea34c2a7385da134a177c262ab9d57e362445ee11a64052783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Age Factors</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Computer Simulation</topic><topic>Female</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Life Change Events</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Proportional Hazards Models</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gardner, William</creatorcontrib><creatorcontrib>Meyer, Marion</creatorcontrib><creatorcontrib>Ketterlinus, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental aging research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gardner, William</au><au>Meyer, Marion</au><au>Ketterlinus, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete-time event history analysis using segmented hazards</atitle><jtitle>Experimental aging research</jtitle><addtitle>Exp Aging Res</addtitle><date>1991-12-01</date><risdate>1991</risdate><volume>17</volume><issue>4</issue><spage>251</spage><epage>260</epage><pages>251-260</pages><issn>0361-073X</issn><eissn>1096-4657</eissn><abstract>Event history analysis is a means of explaining variation in the timing of events in individual life histories. This article describes methods for overcoming two difficult problems likely to be encountered in applications of event history analysis to studies of aging and human development. First, in many studies the ages of occurrence of critical life events are recorded in discrete units such as years, but the probability distributions of life events are usually specified in continuous-time form. We show how to estimate models for discrete-time data based on an underlying continuous-time specification. Second, the standard distributions for life events often fail to capture the complex age-dependence seen in actual data. We show how to construct a model using segmented hazards, that is, a composite of different functions for different segments of time. To illustrate these points, we study the age of first intercourse of 11,883 subjects from the National Longitudinal Study of Youth.</abstract><cop>United States</cop><pub>Taylor &amp; Francis Group</pub><pmid>1820290</pmid><doi>10.1080/03610739108253902</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-073X
ispartof Experimental aging research, 1991-12, Vol.17 (4), p.251-260
issn 0361-073X
1096-4657
language eng
recordid cdi_pubmed_primary_1820290
source MEDLINE; Taylor & Francis Journals Complete
subjects Adolescent
Adult
Age Factors
Aged
Aged, 80 and over
Child
Child, Preschool
Computer Simulation
Female
Humans
Infant
Infant, Newborn
Life Change Events
Longitudinal Studies
Male
Middle Aged
Models, Statistical
Proportional Hazards Models
Time
title Discrete-time event history analysis using segmented hazards
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A39%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete-time%20event%20history%20analysis%20using%20segmented%20hazards&rft.jtitle=Experimental%20aging%20research&rft.au=Gardner,%20William&rft.date=1991-12-01&rft.volume=17&rft.issue=4&rft.spage=251&rft.epage=260&rft.pages=251-260&rft.issn=0361-073X&rft.eissn=1096-4657&rft_id=info:doi/10.1080/03610739108253902&rft_dat=%3Cproquest_pubme%3E72747147%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72747147&rft_id=info:pmid/1820290&rfr_iscdi=true