[29] Modulation of enzyme specificity by site-directed mutagenesis
This chapter discusses the design of mutant proteins, including mutagenesis, expression, and analysis. It focuses on the mutagenesis of substrate binding sites with the caveat that the optimization of enzyme activity may involve residues outside the active site. The use of sequence alignments, struc...
Gespeichert in:
Veröffentlicht in: | Methods in Enzymology 1991, Vol.202, p.671-687 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 687 |
---|---|
container_issue | |
container_start_page | 671 |
container_title | Methods in Enzymology |
container_volume | 202 |
creator | Hedstrom, Lizbeth Graf, Laszlo Stewart, Caro-Beth Rutter, William J. Phillips, Margaret A. |
description | This chapter discusses the design of mutant proteins, including mutagenesis, expression, and analysis. It focuses on the mutagenesis of substrate binding sites with the caveat that the optimization of enzyme activity may involve residues outside the active site. The use of sequence alignments, structure, and modeling is illustrated in the chapter from the work on substrate specificity of the serine proteases, trypsin and chymotrypsin. Trypsin cleaves at lysine and arginine P1 residues, whereas chymotrypsin prefers large hydrophobic residues in the P1 position. The main-chain structures of the two enzymes are virtually superimposable, and they are 40% identical in amino acid sequence. The differences in trypsin and chymotrypsin specificities most likely result from differences in the structure of their SI binding sites. The most straightforward approach to locate the substrate binding site is to determine the structure of enzyme–substrate or enzyme–inhibitor complexes. To a first approximation, the residues within 7 Å of the substrate/inhibitor are responsible for binding. Substrate binding sites can also be localized by chemical modification and mutagenesis experiments. The residues that confer substrate specificity can be further delineated when the enzyme is a member of a family of enzymes with different substrate specificities. The alignment of the primary sequences of these homologous proteins reveals conserved residues that may have important mechanistic or structural roles. Alignments also identify characteristic motifs associated with substrate specificities, and hence provide candidates for the determinants of specificity. |
doi_str_mv | 10.1016/0076-6879(91)02031-4 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_pasca</sourceid><recordid>TN_cdi_pubmed_primary_1784193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0076687991020314</els_id><sourcerecordid>1784193</sourcerecordid><originalsourceid>FETCH-LOGICAL-e314t-b3fe5b6e5a454f5b7dd93df3e1b5db2deff641b3749c928f64acdcf5e801e4083</originalsourceid><addsrcrecordid>eNo9UU1LAzEUDH5QS-0_UNyDBz2s5m2SzeYiaPELKh60J5GQTV4k0u6WzVaov95dW_ouj8fMG5gZQk6AXgGF_JpSmad5IdWFgkuaUQYp3yNDEEKmUhXFPhkrWVDIoMiAsvyADHcvR2Qc4zfthqssz9WADEAWHBQbkruPTH0mL7VbzU0b6iqpfYLV73qBSVyiDT7Y0K6Tcp3E0GLqQoO2RZcsVq35wgpjiMfk0Jt5xPF2j8js4f598pROXx-fJ7fTFBnwNi2ZR1HmKAwX3ItSOqeY8wyhFK7MHHqfcyiZ5MqqrOgOY531AjtXyGnBRuR0o7tclQt0etmEhWnWeuulw8-3uInWzH1jKhvijiYYlUz2Mmcbmje1Nl9NR5m9ZRQYBSkEdEojcrNhYOfmJ2Cjow1YWdy4164OGqjue9F9yLoPWSvQ_71ozv4AJnl53A</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>[29] Modulation of enzyme specificity by site-directed mutagenesis</title><source>ScienceDirect eBooks</source><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hedstrom, Lizbeth ; Graf, Laszlo ; Stewart, Caro-Beth ; Rutter, William J. ; Phillips, Margaret A.</creator><creatorcontrib>Hedstrom, Lizbeth ; Graf, Laszlo ; Stewart, Caro-Beth ; Rutter, William J. ; Phillips, Margaret A.</creatorcontrib><description>This chapter discusses the design of mutant proteins, including mutagenesis, expression, and analysis. It focuses on the mutagenesis of substrate binding sites with the caveat that the optimization of enzyme activity may involve residues outside the active site. The use of sequence alignments, structure, and modeling is illustrated in the chapter from the work on substrate specificity of the serine proteases, trypsin and chymotrypsin. Trypsin cleaves at lysine and arginine P1 residues, whereas chymotrypsin prefers large hydrophobic residues in the P1 position. The main-chain structures of the two enzymes are virtually superimposable, and they are 40% identical in amino acid sequence. The differences in trypsin and chymotrypsin specificities most likely result from differences in the structure of their SI binding sites. The most straightforward approach to locate the substrate binding site is to determine the structure of enzyme–substrate or enzyme–inhibitor complexes. To a first approximation, the residues within 7 Å of the substrate/inhibitor are responsible for binding. Substrate binding sites can also be localized by chemical modification and mutagenesis experiments. The residues that confer substrate specificity can be further delineated when the enzyme is a member of a family of enzymes with different substrate specificities. The alignment of the primary sequences of these homologous proteins reveals conserved residues that may have important mechanistic or structural roles. Alignments also identify characteristic motifs associated with substrate specificities, and hence provide candidates for the determinants of specificity.</description><identifier>ISSN: 0076-6879</identifier><identifier>ISBN: 9780121821036</identifier><identifier>ISBN: 012182103X</identifier><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/0076-6879(91)02031-4</identifier><identifier>PMID: 1784193</identifier><identifier>CODEN: MENZAU</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Science & Technology</publisher><subject>Amino Acid Sequence ; amino acid sequences ; Biological and medical sciences ; Chymotrypsin - genetics ; enzymes ; Enzymes - chemistry ; Enzymes - genetics ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; mutagenesis ; Mutagenesis, Site-Directed ; mutants ; Oligonucleotides - chemical synthesis ; Polymerase Chain Reaction ; Protein Conformation ; Protein Engineering ; Sequence Alignment ; Sequence Homology, Nucleic Acid ; Serine Endopeptidases - chemistry ; Serine Endopeptidases - genetics ; structure-activity relationships ; Substrate Specificity ; substrates ; Trypsin - genetics ; Yeasts - genetics</subject><ispartof>Methods in Enzymology, 1991, Vol.202, p.671-687</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0076687991020314$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,775,776,780,789,3446,3537,4010,11267,27900,27901,27902,45786,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5307378$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1784193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hedstrom, Lizbeth</creatorcontrib><creatorcontrib>Graf, Laszlo</creatorcontrib><creatorcontrib>Stewart, Caro-Beth</creatorcontrib><creatorcontrib>Rutter, William J.</creatorcontrib><creatorcontrib>Phillips, Margaret A.</creatorcontrib><title>[29] Modulation of enzyme specificity by site-directed mutagenesis</title><title>Methods in Enzymology</title><addtitle>Methods Enzymol</addtitle><description>This chapter discusses the design of mutant proteins, including mutagenesis, expression, and analysis. It focuses on the mutagenesis of substrate binding sites with the caveat that the optimization of enzyme activity may involve residues outside the active site. The use of sequence alignments, structure, and modeling is illustrated in the chapter from the work on substrate specificity of the serine proteases, trypsin and chymotrypsin. Trypsin cleaves at lysine and arginine P1 residues, whereas chymotrypsin prefers large hydrophobic residues in the P1 position. The main-chain structures of the two enzymes are virtually superimposable, and they are 40% identical in amino acid sequence. The differences in trypsin and chymotrypsin specificities most likely result from differences in the structure of their SI binding sites. The most straightforward approach to locate the substrate binding site is to determine the structure of enzyme–substrate or enzyme–inhibitor complexes. To a first approximation, the residues within 7 Å of the substrate/inhibitor are responsible for binding. Substrate binding sites can also be localized by chemical modification and mutagenesis experiments. The residues that confer substrate specificity can be further delineated when the enzyme is a member of a family of enzymes with different substrate specificities. The alignment of the primary sequences of these homologous proteins reveals conserved residues that may have important mechanistic or structural roles. Alignments also identify characteristic motifs associated with substrate specificities, and hence provide candidates for the determinants of specificity.</description><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>Biological and medical sciences</subject><subject>Chymotrypsin - genetics</subject><subject>enzymes</subject><subject>Enzymes - chemistry</subject><subject>Enzymes - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>mutants</subject><subject>Oligonucleotides - chemical synthesis</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Serine Endopeptidases - chemistry</subject><subject>Serine Endopeptidases - genetics</subject><subject>structure-activity relationships</subject><subject>Substrate Specificity</subject><subject>substrates</subject><subject>Trypsin - genetics</subject><subject>Yeasts - genetics</subject><issn>0076-6879</issn><issn>1557-7988</issn><isbn>9780121821036</isbn><isbn>012182103X</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9UU1LAzEUDH5QS-0_UNyDBz2s5m2SzeYiaPELKh60J5GQTV4k0u6WzVaov95dW_ouj8fMG5gZQk6AXgGF_JpSmad5IdWFgkuaUQYp3yNDEEKmUhXFPhkrWVDIoMiAsvyADHcvR2Qc4zfthqssz9WADEAWHBQbkruPTH0mL7VbzU0b6iqpfYLV73qBSVyiDT7Y0K6Tcp3E0GLqQoO2RZcsVq35wgpjiMfk0Jt5xPF2j8js4f598pROXx-fJ7fTFBnwNi2ZR1HmKAwX3ItSOqeY8wyhFK7MHHqfcyiZ5MqqrOgOY531AjtXyGnBRuR0o7tclQt0etmEhWnWeuulw8-3uInWzH1jKhvijiYYlUz2Mmcbmje1Nl9NR5m9ZRQYBSkEdEojcrNhYOfmJ2Cjow1YWdy4164OGqjue9F9yLoPWSvQ_71ozv4AJnl53A</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Hedstrom, Lizbeth</creator><creator>Graf, Laszlo</creator><creator>Stewart, Caro-Beth</creator><creator>Rutter, William J.</creator><creator>Phillips, Margaret A.</creator><general>Elsevier Science & Technology</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>1991</creationdate><title>[29] Modulation of enzyme specificity by site-directed mutagenesis</title><author>Hedstrom, Lizbeth ; Graf, Laszlo ; Stewart, Caro-Beth ; Rutter, William J. ; Phillips, Margaret A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e314t-b3fe5b6e5a454f5b7dd93df3e1b5db2deff641b3749c928f64acdcf5e801e4083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>Biological and medical sciences</topic><topic>Chymotrypsin - genetics</topic><topic>enzymes</topic><topic>Enzymes - chemistry</topic><topic>Enzymes - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>mutants</topic><topic>Oligonucleotides - chemical synthesis</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Serine Endopeptidases - chemistry</topic><topic>Serine Endopeptidases - genetics</topic><topic>structure-activity relationships</topic><topic>Substrate Specificity</topic><topic>substrates</topic><topic>Trypsin - genetics</topic><topic>Yeasts - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hedstrom, Lizbeth</creatorcontrib><creatorcontrib>Graf, Laszlo</creatorcontrib><creatorcontrib>Stewart, Caro-Beth</creatorcontrib><creatorcontrib>Rutter, William J.</creatorcontrib><creatorcontrib>Phillips, Margaret A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Methods in Enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hedstrom, Lizbeth</au><au>Graf, Laszlo</au><au>Stewart, Caro-Beth</au><au>Rutter, William J.</au><au>Phillips, Margaret A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>[29] Modulation of enzyme specificity by site-directed mutagenesis</atitle><jtitle>Methods in Enzymology</jtitle><addtitle>Methods Enzymol</addtitle><date>1991</date><risdate>1991</risdate><volume>202</volume><spage>671</spage><epage>687</epage><pages>671-687</pages><issn>0076-6879</issn><eissn>1557-7988</eissn><isbn>9780121821036</isbn><isbn>012182103X</isbn><coden>MENZAU</coden><abstract>This chapter discusses the design of mutant proteins, including mutagenesis, expression, and analysis. It focuses on the mutagenesis of substrate binding sites with the caveat that the optimization of enzyme activity may involve residues outside the active site. The use of sequence alignments, structure, and modeling is illustrated in the chapter from the work on substrate specificity of the serine proteases, trypsin and chymotrypsin. Trypsin cleaves at lysine and arginine P1 residues, whereas chymotrypsin prefers large hydrophobic residues in the P1 position. The main-chain structures of the two enzymes are virtually superimposable, and they are 40% identical in amino acid sequence. The differences in trypsin and chymotrypsin specificities most likely result from differences in the structure of their SI binding sites. The most straightforward approach to locate the substrate binding site is to determine the structure of enzyme–substrate or enzyme–inhibitor complexes. To a first approximation, the residues within 7 Å of the substrate/inhibitor are responsible for binding. Substrate binding sites can also be localized by chemical modification and mutagenesis experiments. The residues that confer substrate specificity can be further delineated when the enzyme is a member of a family of enzymes with different substrate specificities. The alignment of the primary sequences of these homologous proteins reveals conserved residues that may have important mechanistic or structural roles. Alignments also identify characteristic motifs associated with substrate specificities, and hence provide candidates for the determinants of specificity.</abstract><cop>San Diego, CA</cop><pub>Elsevier Science & Technology</pub><pmid>1784193</pmid><doi>10.1016/0076-6879(91)02031-4</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0076-6879 |
ispartof | Methods in Enzymology, 1991, Vol.202, p.671-687 |
issn | 0076-6879 1557-7988 |
language | eng |
recordid | cdi_pubmed_primary_1784193 |
source | ScienceDirect eBooks; MEDLINE; Elsevier ScienceDirect Journals |
subjects | Amino Acid Sequence amino acid sequences Biological and medical sciences Chymotrypsin - genetics enzymes Enzymes - chemistry Enzymes - genetics Escherichia coli - genetics Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Bacterial Molecular and cellular biology Molecular genetics Molecular Sequence Data mutagenesis Mutagenesis, Site-Directed mutants Oligonucleotides - chemical synthesis Polymerase Chain Reaction Protein Conformation Protein Engineering Sequence Alignment Sequence Homology, Nucleic Acid Serine Endopeptidases - chemistry Serine Endopeptidases - genetics structure-activity relationships Substrate Specificity substrates Trypsin - genetics Yeasts - genetics |
title | [29] Modulation of enzyme specificity by site-directed mutagenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%5B29%5D%20Modulation%20of%20enzyme%20specificity%20by%20site-directed%20mutagenesis&rft.jtitle=Methods%20in%20Enzymology&rft.au=Hedstrom,%20Lizbeth&rft.date=1991&rft.volume=202&rft.spage=671&rft.epage=687&rft.pages=671-687&rft.issn=0076-6879&rft.eissn=1557-7988&rft.isbn=9780121821036&rft.isbn_list=012182103X&rft.coden=MENZAU&rft_id=info:doi/10.1016/0076-6879(91)02031-4&rft_dat=%3Cpubmed_pasca%3E1784193%3C/pubmed_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/1784193&rft_els_id=0076687991020314&rfr_iscdi=true |