[29] Modulation of enzyme specificity by site-directed mutagenesis

This chapter discusses the design of mutant proteins, including mutagenesis, expression, and analysis. It focuses on the mutagenesis of substrate binding sites with the caveat that the optimization of enzyme activity may involve residues outside the active site. The use of sequence alignments, struc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in Enzymology 1991, Vol.202, p.671-687
Hauptverfasser: Hedstrom, Lizbeth, Graf, Laszlo, Stewart, Caro-Beth, Rutter, William J., Phillips, Margaret A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 687
container_issue
container_start_page 671
container_title Methods in Enzymology
container_volume 202
creator Hedstrom, Lizbeth
Graf, Laszlo
Stewart, Caro-Beth
Rutter, William J.
Phillips, Margaret A.
description This chapter discusses the design of mutant proteins, including mutagenesis, expression, and analysis. It focuses on the mutagenesis of substrate binding sites with the caveat that the optimization of enzyme activity may involve residues outside the active site. The use of sequence alignments, structure, and modeling is illustrated in the chapter from the work on substrate specificity of the serine proteases, trypsin and chymotrypsin. Trypsin cleaves at lysine and arginine P1 residues, whereas chymotrypsin prefers large hydrophobic residues in the P1 position. The main-chain structures of the two enzymes are virtually superimposable, and they are 40% identical in amino acid sequence. The differences in trypsin and chymotrypsin specificities most likely result from differences in the structure of their SI binding sites. The most straightforward approach to locate the substrate binding site is to determine the structure of enzyme–substrate or enzyme–inhibitor complexes. To a first approximation, the residues within 7 Å of the substrate/inhibitor are responsible for binding. Substrate binding sites can also be localized by chemical modification and mutagenesis experiments. The residues that confer substrate specificity can be further delineated when the enzyme is a member of a family of enzymes with different substrate specificities. The alignment of the primary sequences of these homologous proteins reveals conserved residues that may have important mechanistic or structural roles. Alignments also identify characteristic motifs associated with substrate specificities, and hence provide candidates for the determinants of specificity.
doi_str_mv 10.1016/0076-6879(91)02031-4
format Article
fullrecord <record><control><sourceid>pubmed_pasca</sourceid><recordid>TN_cdi_pubmed_primary_1784193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0076687991020314</els_id><sourcerecordid>1784193</sourcerecordid><originalsourceid>FETCH-LOGICAL-e314t-b3fe5b6e5a454f5b7dd93df3e1b5db2deff641b3749c928f64acdcf5e801e4083</originalsourceid><addsrcrecordid>eNo9UU1LAzEUDH5QS-0_UNyDBz2s5m2SzeYiaPELKh60J5GQTV4k0u6WzVaov95dW_ouj8fMG5gZQk6AXgGF_JpSmad5IdWFgkuaUQYp3yNDEEKmUhXFPhkrWVDIoMiAsvyADHcvR2Qc4zfthqssz9WADEAWHBQbkruPTH0mL7VbzU0b6iqpfYLV73qBSVyiDT7Y0K6Tcp3E0GLqQoO2RZcsVq35wgpjiMfk0Jt5xPF2j8js4f598pROXx-fJ7fTFBnwNi2ZR1HmKAwX3ItSOqeY8wyhFK7MHHqfcyiZ5MqqrOgOY531AjtXyGnBRuR0o7tclQt0etmEhWnWeuulw8-3uInWzH1jKhvijiYYlUz2Mmcbmje1Nl9NR5m9ZRQYBSkEdEojcrNhYOfmJ2Cjow1YWdy4164OGqjue9F9yLoPWSvQ_71ozv4AJnl53A</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>[29] Modulation of enzyme specificity by site-directed mutagenesis</title><source>ScienceDirect eBooks</source><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hedstrom, Lizbeth ; Graf, Laszlo ; Stewart, Caro-Beth ; Rutter, William J. ; Phillips, Margaret A.</creator><creatorcontrib>Hedstrom, Lizbeth ; Graf, Laszlo ; Stewart, Caro-Beth ; Rutter, William J. ; Phillips, Margaret A.</creatorcontrib><description>This chapter discusses the design of mutant proteins, including mutagenesis, expression, and analysis. It focuses on the mutagenesis of substrate binding sites with the caveat that the optimization of enzyme activity may involve residues outside the active site. The use of sequence alignments, structure, and modeling is illustrated in the chapter from the work on substrate specificity of the serine proteases, trypsin and chymotrypsin. Trypsin cleaves at lysine and arginine P1 residues, whereas chymotrypsin prefers large hydrophobic residues in the P1 position. The main-chain structures of the two enzymes are virtually superimposable, and they are 40% identical in amino acid sequence. The differences in trypsin and chymotrypsin specificities most likely result from differences in the structure of their SI binding sites. The most straightforward approach to locate the substrate binding site is to determine the structure of enzyme–substrate or enzyme–inhibitor complexes. To a first approximation, the residues within 7 Å of the substrate/inhibitor are responsible for binding. Substrate binding sites can also be localized by chemical modification and mutagenesis experiments. The residues that confer substrate specificity can be further delineated when the enzyme is a member of a family of enzymes with different substrate specificities. The alignment of the primary sequences of these homologous proteins reveals conserved residues that may have important mechanistic or structural roles. Alignments also identify characteristic motifs associated with substrate specificities, and hence provide candidates for the determinants of specificity.</description><identifier>ISSN: 0076-6879</identifier><identifier>ISBN: 9780121821036</identifier><identifier>ISBN: 012182103X</identifier><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/0076-6879(91)02031-4</identifier><identifier>PMID: 1784193</identifier><identifier>CODEN: MENZAU</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Science &amp; Technology</publisher><subject>Amino Acid Sequence ; amino acid sequences ; Biological and medical sciences ; Chymotrypsin - genetics ; enzymes ; Enzymes - chemistry ; Enzymes - genetics ; Escherichia coli - genetics ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Bacterial ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; mutagenesis ; Mutagenesis, Site-Directed ; mutants ; Oligonucleotides - chemical synthesis ; Polymerase Chain Reaction ; Protein Conformation ; Protein Engineering ; Sequence Alignment ; Sequence Homology, Nucleic Acid ; Serine Endopeptidases - chemistry ; Serine Endopeptidases - genetics ; structure-activity relationships ; Substrate Specificity ; substrates ; Trypsin - genetics ; Yeasts - genetics</subject><ispartof>Methods in Enzymology, 1991, Vol.202, p.671-687</ispartof><rights>1991</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0076687991020314$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,775,776,780,789,3446,3537,4010,11267,27900,27901,27902,45786,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5307378$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1784193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hedstrom, Lizbeth</creatorcontrib><creatorcontrib>Graf, Laszlo</creatorcontrib><creatorcontrib>Stewart, Caro-Beth</creatorcontrib><creatorcontrib>Rutter, William J.</creatorcontrib><creatorcontrib>Phillips, Margaret A.</creatorcontrib><title>[29] Modulation of enzyme specificity by site-directed mutagenesis</title><title>Methods in Enzymology</title><addtitle>Methods Enzymol</addtitle><description>This chapter discusses the design of mutant proteins, including mutagenesis, expression, and analysis. It focuses on the mutagenesis of substrate binding sites with the caveat that the optimization of enzyme activity may involve residues outside the active site. The use of sequence alignments, structure, and modeling is illustrated in the chapter from the work on substrate specificity of the serine proteases, trypsin and chymotrypsin. Trypsin cleaves at lysine and arginine P1 residues, whereas chymotrypsin prefers large hydrophobic residues in the P1 position. The main-chain structures of the two enzymes are virtually superimposable, and they are 40% identical in amino acid sequence. The differences in trypsin and chymotrypsin specificities most likely result from differences in the structure of their SI binding sites. The most straightforward approach to locate the substrate binding site is to determine the structure of enzyme–substrate or enzyme–inhibitor complexes. To a first approximation, the residues within 7 Å of the substrate/inhibitor are responsible for binding. Substrate binding sites can also be localized by chemical modification and mutagenesis experiments. The residues that confer substrate specificity can be further delineated when the enzyme is a member of a family of enzymes with different substrate specificities. The alignment of the primary sequences of these homologous proteins reveals conserved residues that may have important mechanistic or structural roles. Alignments also identify characteristic motifs associated with substrate specificities, and hence provide candidates for the determinants of specificity.</description><subject>Amino Acid Sequence</subject><subject>amino acid sequences</subject><subject>Biological and medical sciences</subject><subject>Chymotrypsin - genetics</subject><subject>enzymes</subject><subject>Enzymes - chemistry</subject><subject>Enzymes - genetics</subject><subject>Escherichia coli - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>mutants</subject><subject>Oligonucleotides - chemical synthesis</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Serine Endopeptidases - chemistry</subject><subject>Serine Endopeptidases - genetics</subject><subject>structure-activity relationships</subject><subject>Substrate Specificity</subject><subject>substrates</subject><subject>Trypsin - genetics</subject><subject>Yeasts - genetics</subject><issn>0076-6879</issn><issn>1557-7988</issn><isbn>9780121821036</isbn><isbn>012182103X</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9UU1LAzEUDH5QS-0_UNyDBz2s5m2SzeYiaPELKh60J5GQTV4k0u6WzVaov95dW_ouj8fMG5gZQk6AXgGF_JpSmad5IdWFgkuaUQYp3yNDEEKmUhXFPhkrWVDIoMiAsvyADHcvR2Qc4zfthqssz9WADEAWHBQbkruPTH0mL7VbzU0b6iqpfYLV73qBSVyiDT7Y0K6Tcp3E0GLqQoO2RZcsVq35wgpjiMfk0Jt5xPF2j8js4f598pROXx-fJ7fTFBnwNi2ZR1HmKAwX3ItSOqeY8wyhFK7MHHqfcyiZ5MqqrOgOY531AjtXyGnBRuR0o7tclQt0etmEhWnWeuulw8-3uInWzH1jKhvijiYYlUz2Mmcbmje1Nl9NR5m9ZRQYBSkEdEojcrNhYOfmJ2Cjow1YWdy4164OGqjue9F9yLoPWSvQ_71ozv4AJnl53A</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Hedstrom, Lizbeth</creator><creator>Graf, Laszlo</creator><creator>Stewart, Caro-Beth</creator><creator>Rutter, William J.</creator><creator>Phillips, Margaret A.</creator><general>Elsevier Science &amp; Technology</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>1991</creationdate><title>[29] Modulation of enzyme specificity by site-directed mutagenesis</title><author>Hedstrom, Lizbeth ; Graf, Laszlo ; Stewart, Caro-Beth ; Rutter, William J. ; Phillips, Margaret A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e314t-b3fe5b6e5a454f5b7dd93df3e1b5db2deff641b3749c928f64acdcf5e801e4083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Amino Acid Sequence</topic><topic>amino acid sequences</topic><topic>Biological and medical sciences</topic><topic>Chymotrypsin - genetics</topic><topic>enzymes</topic><topic>Enzymes - chemistry</topic><topic>Enzymes - genetics</topic><topic>Escherichia coli - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>mutants</topic><topic>Oligonucleotides - chemical synthesis</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Serine Endopeptidases - chemistry</topic><topic>Serine Endopeptidases - genetics</topic><topic>structure-activity relationships</topic><topic>Substrate Specificity</topic><topic>substrates</topic><topic>Trypsin - genetics</topic><topic>Yeasts - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hedstrom, Lizbeth</creatorcontrib><creatorcontrib>Graf, Laszlo</creatorcontrib><creatorcontrib>Stewart, Caro-Beth</creatorcontrib><creatorcontrib>Rutter, William J.</creatorcontrib><creatorcontrib>Phillips, Margaret A.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Methods in Enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hedstrom, Lizbeth</au><au>Graf, Laszlo</au><au>Stewart, Caro-Beth</au><au>Rutter, William J.</au><au>Phillips, Margaret A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>[29] Modulation of enzyme specificity by site-directed mutagenesis</atitle><jtitle>Methods in Enzymology</jtitle><addtitle>Methods Enzymol</addtitle><date>1991</date><risdate>1991</risdate><volume>202</volume><spage>671</spage><epage>687</epage><pages>671-687</pages><issn>0076-6879</issn><eissn>1557-7988</eissn><isbn>9780121821036</isbn><isbn>012182103X</isbn><coden>MENZAU</coden><abstract>This chapter discusses the design of mutant proteins, including mutagenesis, expression, and analysis. It focuses on the mutagenesis of substrate binding sites with the caveat that the optimization of enzyme activity may involve residues outside the active site. The use of sequence alignments, structure, and modeling is illustrated in the chapter from the work on substrate specificity of the serine proteases, trypsin and chymotrypsin. Trypsin cleaves at lysine and arginine P1 residues, whereas chymotrypsin prefers large hydrophobic residues in the P1 position. The main-chain structures of the two enzymes are virtually superimposable, and they are 40% identical in amino acid sequence. The differences in trypsin and chymotrypsin specificities most likely result from differences in the structure of their SI binding sites. The most straightforward approach to locate the substrate binding site is to determine the structure of enzyme–substrate or enzyme–inhibitor complexes. To a first approximation, the residues within 7 Å of the substrate/inhibitor are responsible for binding. Substrate binding sites can also be localized by chemical modification and mutagenesis experiments. The residues that confer substrate specificity can be further delineated when the enzyme is a member of a family of enzymes with different substrate specificities. The alignment of the primary sequences of these homologous proteins reveals conserved residues that may have important mechanistic or structural roles. Alignments also identify characteristic motifs associated with substrate specificities, and hence provide candidates for the determinants of specificity.</abstract><cop>San Diego, CA</cop><pub>Elsevier Science &amp; Technology</pub><pmid>1784193</pmid><doi>10.1016/0076-6879(91)02031-4</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0076-6879
ispartof Methods in Enzymology, 1991, Vol.202, p.671-687
issn 0076-6879
1557-7988
language eng
recordid cdi_pubmed_primary_1784193
source ScienceDirect eBooks; MEDLINE; Elsevier ScienceDirect Journals
subjects Amino Acid Sequence
amino acid sequences
Biological and medical sciences
Chymotrypsin - genetics
enzymes
Enzymes - chemistry
Enzymes - genetics
Escherichia coli - genetics
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Bacterial
Molecular and cellular biology
Molecular genetics
Molecular Sequence Data
mutagenesis
Mutagenesis, Site-Directed
mutants
Oligonucleotides - chemical synthesis
Polymerase Chain Reaction
Protein Conformation
Protein Engineering
Sequence Alignment
Sequence Homology, Nucleic Acid
Serine Endopeptidases - chemistry
Serine Endopeptidases - genetics
structure-activity relationships
Substrate Specificity
substrates
Trypsin - genetics
Yeasts - genetics
title [29] Modulation of enzyme specificity by site-directed mutagenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A58%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%5B29%5D%20Modulation%20of%20enzyme%20specificity%20by%20site-directed%20mutagenesis&rft.jtitle=Methods%20in%20Enzymology&rft.au=Hedstrom,%20Lizbeth&rft.date=1991&rft.volume=202&rft.spage=671&rft.epage=687&rft.pages=671-687&rft.issn=0076-6879&rft.eissn=1557-7988&rft.isbn=9780121821036&rft.isbn_list=012182103X&rft.coden=MENZAU&rft_id=info:doi/10.1016/0076-6879(91)02031-4&rft_dat=%3Cpubmed_pasca%3E1784193%3C/pubmed_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/1784193&rft_els_id=0076687991020314&rfr_iscdi=true