model of Internet topology using k-shell decomposition

We study a map of the Internet (at the autonomous systems level), by introducing and using the method of k-shell decomposition and the methods of percolation theory and fractal geometry, to find a model for the structure of the Internet. In particular, our analysis uses information on the connectivi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-07, Vol.104 (27), p.11150-11154
Hauptverfasser: Carmi, Shai, Havlin, Shlomo, Kirkpatrick, Scott, Shavitt, Yuval, Shir, Eran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11154
container_issue 27
container_start_page 11150
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Carmi, Shai
Havlin, Shlomo
Kirkpatrick, Scott
Shavitt, Yuval
Shir, Eran
description We study a map of the Internet (at the autonomous systems level), by introducing and using the method of k-shell decomposition and the methods of percolation theory and fractal geometry, to find a model for the structure of the Internet. In particular, our analysis uses information on the connectivity of the network shells to separate, in a unique (no parameters) way, the Internet into three subcomponents: (i) a nucleus that is a small ([almost equal to]100 nodes), very well connected globally distributed subgraph; (ii) a fractal subcomponent that is able to connect the bulk of the Internet without congesting the nucleus, with self-similar properties and critical exponents predicted from percolation theory; and (iii) dendrite-like structures, usually isolated nodes that are connected to the rest of the network through the nucleus only. We show that our method of decomposition is robust and provides insight into the underlying structure of the Internet and its functional consequences. Our approach of decomposing the network is general and also useful when studying other complex networks.
doi_str_mv 10.1073/pnas.0701175104
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17586683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25436083</jstor_id><sourcerecordid>25436083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-53d33b8f88d60de66106c985811c4c92de176c12274dceba884c18e5a14aec523</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhzAmIOCBxSDvj71yQUMVHpUocoGfL6zjbLEkcbAfR_x5vd9UFLpzmML95854eIc8RzhAUO58nm85AAaISCPwBWSE0WEvewEOyAqCq1pzyE_IkpS0ANELDY3JSaC2lZisix9D6oQpddTllHyefqxzmMITNbbWkftpU3-t044ehar0L4xxSn_swPSWPOjsk_-wwT8n1xw_fLj7XV18-XV68v6qdoCzXgrWMrXWndSuh9VIiSNdooREddw1tPSrpkFLFW-fXVmvuUHthkVu_kzgl7_a687IefWGmHO1g5tiPNt6aYHvz92bqb8wm_DSoG4lMFIE3B4EYfiw-ZTP2yZU8dvJhSUaB1AIEFPD1P-A2LHEq4QwF5KwYxQKd7yEXQ0rRd_dOEMyuELMrxBwLKRcv_wxw5A8NFKA6ALvLoxw3VBlEvLP29j-I6ZZhyP5XLuyLPbtNOcR7mArOJNy9e7XfdzYYu4l9MtdfS0AGoLTSINhvajqx5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201431761</pqid></control><display><type>article</type><title>model of Internet topology using k-shell decomposition</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Carmi, Shai ; Havlin, Shlomo ; Kirkpatrick, Scott ; Shavitt, Yuval ; Shir, Eran</creator><creatorcontrib>Carmi, Shai ; Havlin, Shlomo ; Kirkpatrick, Scott ; Shavitt, Yuval ; Shir, Eran</creatorcontrib><description>We study a map of the Internet (at the autonomous systems level), by introducing and using the method of k-shell decomposition and the methods of percolation theory and fractal geometry, to find a model for the structure of the Internet. In particular, our analysis uses information on the connectivity of the network shells to separate, in a unique (no parameters) way, the Internet into three subcomponents: (i) a nucleus that is a small ([almost equal to]100 nodes), very well connected globally distributed subgraph; (ii) a fractal subcomponent that is able to connect the bulk of the Internet without congesting the nucleus, with self-similar properties and critical exponents predicted from percolation theory; and (iii) dendrite-like structures, usually isolated nodes that are connected to the rest of the network through the nucleus only. We show that our method of decomposition is robust and provides insight into the underlying structure of the Internet and its functional consequences. Our approach of decomposing the network is general and also useful when studying other complex networks.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0701175104</identifier><identifier>PMID: 17586683</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Complex networks ; Computer networking ; Computer networks ; Connectivity ; Data visualization ; Decomposition ; Fractal dimensions ; Fractals ; Hyperlinks ; Internet ; Percolation ; Physical Sciences ; Power laws ; Probability distributions ; Tendrils ; Theory ; Topology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-07, Vol.104 (27), p.11150-11154</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 3, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-53d33b8f88d60de66106c985811c4c92de176c12274dceba884c18e5a14aec523</citedby><cites>FETCH-LOGICAL-c523t-53d33b8f88d60de66106c985811c4c92de176c12274dceba884c18e5a14aec523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25436083$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25436083$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17586683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carmi, Shai</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><creatorcontrib>Kirkpatrick, Scott</creatorcontrib><creatorcontrib>Shavitt, Yuval</creatorcontrib><creatorcontrib>Shir, Eran</creatorcontrib><title>model of Internet topology using k-shell decomposition</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We study a map of the Internet (at the autonomous systems level), by introducing and using the method of k-shell decomposition and the methods of percolation theory and fractal geometry, to find a model for the structure of the Internet. In particular, our analysis uses information on the connectivity of the network shells to separate, in a unique (no parameters) way, the Internet into three subcomponents: (i) a nucleus that is a small ([almost equal to]100 nodes), very well connected globally distributed subgraph; (ii) a fractal subcomponent that is able to connect the bulk of the Internet without congesting the nucleus, with self-similar properties and critical exponents predicted from percolation theory; and (iii) dendrite-like structures, usually isolated nodes that are connected to the rest of the network through the nucleus only. We show that our method of decomposition is robust and provides insight into the underlying structure of the Internet and its functional consequences. Our approach of decomposing the network is general and also useful when studying other complex networks.</description><subject>Complex networks</subject><subject>Computer networking</subject><subject>Computer networks</subject><subject>Connectivity</subject><subject>Data visualization</subject><subject>Decomposition</subject><subject>Fractal dimensions</subject><subject>Fractals</subject><subject>Hyperlinks</subject><subject>Internet</subject><subject>Percolation</subject><subject>Physical Sciences</subject><subject>Power laws</subject><subject>Probability distributions</subject><subject>Tendrils</subject><subject>Theory</subject><subject>Topology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkc1v1DAQxS0EokvhzAmIOCBxSDvj71yQUMVHpUocoGfL6zjbLEkcbAfR_x5vd9UFLpzmML95854eIc8RzhAUO58nm85AAaISCPwBWSE0WEvewEOyAqCq1pzyE_IkpS0ANELDY3JSaC2lZisix9D6oQpddTllHyefqxzmMITNbbWkftpU3-t044ehar0L4xxSn_swPSWPOjsk_-wwT8n1xw_fLj7XV18-XV68v6qdoCzXgrWMrXWndSuh9VIiSNdooREddw1tPSrpkFLFW-fXVmvuUHthkVu_kzgl7_a687IefWGmHO1g5tiPNt6aYHvz92bqb8wm_DSoG4lMFIE3B4EYfiw-ZTP2yZU8dvJhSUaB1AIEFPD1P-A2LHEq4QwF5KwYxQKd7yEXQ0rRd_dOEMyuELMrxBwLKRcv_wxw5A8NFKA6ALvLoxw3VBlEvLP29j-I6ZZhyP5XLuyLPbtNOcR7mArOJNy9e7XfdzYYu4l9MtdfS0AGoLTSINhvajqx5w</recordid><startdate>20070703</startdate><enddate>20070703</enddate><creator>Carmi, Shai</creator><creator>Havlin, Shlomo</creator><creator>Kirkpatrick, Scott</creator><creator>Shavitt, Yuval</creator><creator>Shir, Eran</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070703</creationdate><title>model of Internet topology using k-shell decomposition</title><author>Carmi, Shai ; Havlin, Shlomo ; Kirkpatrick, Scott ; Shavitt, Yuval ; Shir, Eran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-53d33b8f88d60de66106c985811c4c92de176c12274dceba884c18e5a14aec523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Complex networks</topic><topic>Computer networking</topic><topic>Computer networks</topic><topic>Connectivity</topic><topic>Data visualization</topic><topic>Decomposition</topic><topic>Fractal dimensions</topic><topic>Fractals</topic><topic>Hyperlinks</topic><topic>Internet</topic><topic>Percolation</topic><topic>Physical Sciences</topic><topic>Power laws</topic><topic>Probability distributions</topic><topic>Tendrils</topic><topic>Theory</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carmi, Shai</creatorcontrib><creatorcontrib>Havlin, Shlomo</creatorcontrib><creatorcontrib>Kirkpatrick, Scott</creatorcontrib><creatorcontrib>Shavitt, Yuval</creatorcontrib><creatorcontrib>Shir, Eran</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carmi, Shai</au><au>Havlin, Shlomo</au><au>Kirkpatrick, Scott</au><au>Shavitt, Yuval</au><au>Shir, Eran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>model of Internet topology using k-shell decomposition</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-07-03</date><risdate>2007</risdate><volume>104</volume><issue>27</issue><spage>11150</spage><epage>11154</epage><pages>11150-11154</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We study a map of the Internet (at the autonomous systems level), by introducing and using the method of k-shell decomposition and the methods of percolation theory and fractal geometry, to find a model for the structure of the Internet. In particular, our analysis uses information on the connectivity of the network shells to separate, in a unique (no parameters) way, the Internet into three subcomponents: (i) a nucleus that is a small ([almost equal to]100 nodes), very well connected globally distributed subgraph; (ii) a fractal subcomponent that is able to connect the bulk of the Internet without congesting the nucleus, with self-similar properties and critical exponents predicted from percolation theory; and (iii) dendrite-like structures, usually isolated nodes that are connected to the rest of the network through the nucleus only. We show that our method of decomposition is robust and provides insight into the underlying structure of the Internet and its functional consequences. Our approach of decomposing the network is general and also useful when studying other complex networks.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17586683</pmid><doi>10.1073/pnas.0701175104</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-07, Vol.104 (27), p.11150-11154
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_17586683
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Complex networks
Computer networking
Computer networks
Connectivity
Data visualization
Decomposition
Fractal dimensions
Fractals
Hyperlinks
Internet
Percolation
Physical Sciences
Power laws
Probability distributions
Tendrils
Theory
Topology
title model of Internet topology using k-shell decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A45%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=model%20of%20Internet%20topology%20using%20k-shell%20decomposition&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Carmi,%20Shai&rft.date=2007-07-03&rft.volume=104&rft.issue=27&rft.spage=11150&rft.epage=11154&rft.pages=11150-11154&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0701175104&rft_dat=%3Cjstor_pubme%3E25436083%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201431761&rft_id=info:pmid/17586683&rft_jstor_id=25436083&rfr_iscdi=true