Multiplicative Updates for Nonnegative Quadratic Programming

Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 2007-08, Vol.19 (8), p.2004-2031
Hauptverfasser: Sha, Fei, Lin, Yuanqing, Saul, Lawrence K., Lee, Daniel D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2031
container_issue 8
container_start_page 2004
container_title Neural computation
container_volume 19
creator Sha, Fei
Lin, Yuanqing
Saul, Lawrence K.
Lee, Daniel D.
description Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning. We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition.
doi_str_mv 10.1162/neco.2007.19.8.2004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17571937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1290784991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-958c7a66106e18d0a42298c1ed1b572c2d23b01ce29da7c33d049ae3ec0bb32e3</originalsourceid><addsrcrecordid>eNp9kFtLJDEQhYO46Oj6CwQZBH3rmaqku5OALzLsquBtYYV9C-l0Zoj0zaRb0F-_aWZAkcGnOhTfOVUcQo4RZog5nTfWtDMKwGcoZ2JU6Q6ZYMYgEUL82yUTEFImPM_5PjkI4RkAcoRsj-wjzzhKxifk4m6oetdVzujevdrpU1fq3obpsvXT-7Zp7Gq9_zPo0kdppo--XXld165Z_SQ_lroK9mgzD8nT719_F9fJ7cPVzeLyNjEZz_pEZsJwncfbuUVRgk4plcKgLbHIODW0pKwANJbKUnPDWAmp1JZZA0XBqGWH5Hyd2_n2ZbChV7ULxlaVbmw7BMUhB5bRPIKnX8DndvBN_E1RRMo4pBAhtoaMb0Pwdqk672rt3xSCGptVY7NqbFahVGJUaXSdbKKHorblh2dTZQTONoAORldLrxvjwgcnhOQgReTma652n977_vTVFsdIvqJ0QjGgaUojSzGGKBDq3XVbk_4DEPemmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211237040</pqid></control><display><type>article</type><title>Multiplicative Updates for Nonnegative Quadratic Programming</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Sha, Fei ; Lin, Yuanqing ; Saul, Lawrence K. ; Lee, Daniel D.</creator><creatorcontrib>Sha, Fei ; Lin, Yuanqing ; Saul, Lawrence K. ; Lee, Daniel D.</creatorcontrib><description>Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning. We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco.2007.19.8.2004</identifier><identifier>PMID: 17571937</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Animals ; Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Calculus of variations and optimal control ; Computer programming ; Computer science; control theory; systems ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Heuristic ; Humans ; Information Storage and Retrieval - methods ; Learning and adaptive systems ; Mathematical analysis ; Mathematics ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Miscellaneous ; Neural Networks (Computer) ; Optimization ; Programming, Linear ; Sciences and techniques of general use ; Signal Processing, Computer-Assisted</subject><ispartof>Neural computation, 2007-08, Vol.19 (8), p.2004-2031</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright MIT Press Journals Aug 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-958c7a66106e18d0a42298c1ed1b572c2d23b01ce29da7c33d049ae3ec0bb32e3</citedby><cites>FETCH-LOGICAL-c575t-958c7a66106e18d0a42298c1ed1b572c2d23b01ce29da7c33d049ae3ec0bb32e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco.2007.19.8.2004$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54008,54009</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18897098$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17571937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sha, Fei</creatorcontrib><creatorcontrib>Lin, Yuanqing</creatorcontrib><creatorcontrib>Saul, Lawrence K.</creatorcontrib><creatorcontrib>Lee, Daniel D.</creatorcontrib><title>Multiplicative Updates for Nonnegative Quadratic Programming</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning. We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Calculus of variations and optimal control</subject><subject>Computer programming</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Heuristic</subject><subject>Humans</subject><subject>Information Storage and Retrieval - methods</subject><subject>Learning and adaptive systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Miscellaneous</subject><subject>Neural Networks (Computer)</subject><subject>Optimization</subject><subject>Programming, Linear</subject><subject>Sciences and techniques of general use</subject><subject>Signal Processing, Computer-Assisted</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kFtLJDEQhYO46Oj6CwQZBH3rmaqku5OALzLsquBtYYV9C-l0Zoj0zaRb0F-_aWZAkcGnOhTfOVUcQo4RZog5nTfWtDMKwGcoZ2JU6Q6ZYMYgEUL82yUTEFImPM_5PjkI4RkAcoRsj-wjzzhKxifk4m6oetdVzujevdrpU1fq3obpsvXT-7Zp7Gq9_zPo0kdppo--XXld165Z_SQ_lroK9mgzD8nT719_F9fJ7cPVzeLyNjEZz_pEZsJwncfbuUVRgk4plcKgLbHIODW0pKwANJbKUnPDWAmp1JZZA0XBqGWH5Hyd2_n2ZbChV7ULxlaVbmw7BMUhB5bRPIKnX8DndvBN_E1RRMo4pBAhtoaMb0Pwdqk672rt3xSCGptVY7NqbFahVGJUaXSdbKKHorblh2dTZQTONoAORldLrxvjwgcnhOQgReTma652n977_vTVFsdIvqJ0QjGgaUojSzGGKBDq3XVbk_4DEPemmQ</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Sha, Fei</creator><creator>Lin, Yuanqing</creator><creator>Saul, Lawrence K.</creator><creator>Lee, Daniel D.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20070801</creationdate><title>Multiplicative Updates for Nonnegative Quadratic Programming</title><author>Sha, Fei ; Lin, Yuanqing ; Saul, Lawrence K. ; Lee, Daniel D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-958c7a66106e18d0a42298c1ed1b572c2d23b01ce29da7c33d049ae3ec0bb32e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Calculus of variations and optimal control</topic><topic>Computer programming</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Heuristic</topic><topic>Humans</topic><topic>Information Storage and Retrieval - methods</topic><topic>Learning and adaptive systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Miscellaneous</topic><topic>Neural Networks (Computer)</topic><topic>Optimization</topic><topic>Programming, Linear</topic><topic>Sciences and techniques of general use</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sha, Fei</creatorcontrib><creatorcontrib>Lin, Yuanqing</creatorcontrib><creatorcontrib>Saul, Lawrence K.</creatorcontrib><creatorcontrib>Lee, Daniel D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sha, Fei</au><au>Lin, Yuanqing</au><au>Saul, Lawrence K.</au><au>Lee, Daniel D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicative Updates for Nonnegative Quadratic Programming</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>19</volume><issue>8</issue><spage>2004</spage><epage>2031</epage><pages>2004-2031</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning. We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>17571937</pmid><doi>10.1162/neco.2007.19.8.2004</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2007-08, Vol.19 (8), p.2004-2031
issn 0899-7667
1530-888X
language eng
recordid cdi_pubmed_primary_17571937
source MEDLINE; MIT Press Journals
subjects Algorithms
Animals
Applied sciences
Artificial intelligence
Biological and medical sciences
Calculus of variations and optimal control
Computer programming
Computer science
control theory
systems
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
Heuristic
Humans
Information Storage and Retrieval - methods
Learning and adaptive systems
Mathematical analysis
Mathematics
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Miscellaneous
Neural Networks (Computer)
Optimization
Programming, Linear
Sciences and techniques of general use
Signal Processing, Computer-Assisted
title Multiplicative Updates for Nonnegative Quadratic Programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicative%20Updates%20for%20Nonnegative%20Quadratic%20Programming&rft.jtitle=Neural%20computation&rft.au=Sha,%20Fei&rft.date=2007-08-01&rft.volume=19&rft.issue=8&rft.spage=2004&rft.epage=2031&rft.pages=2004-2031&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/neco.2007.19.8.2004&rft_dat=%3Cproquest_pubme%3E1290784991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211237040&rft_id=info:pmid/17571937&rfr_iscdi=true