Multiplicative Updates for Nonnegative Quadratic Programming
Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive...
Gespeichert in:
Veröffentlicht in: | Neural computation 2007-08, Vol.19 (8), p.2004-2031 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2031 |
---|---|
container_issue | 8 |
container_start_page | 2004 |
container_title | Neural computation |
container_volume | 19 |
creator | Sha, Fei Lin, Yuanqing Saul, Lawrence K. Lee, Daniel D. |
description | Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning. We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition. |
doi_str_mv | 10.1162/neco.2007.19.8.2004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17571937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1290784991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-958c7a66106e18d0a42298c1ed1b572c2d23b01ce29da7c33d049ae3ec0bb32e3</originalsourceid><addsrcrecordid>eNp9kFtLJDEQhYO46Oj6CwQZBH3rmaqku5OALzLsquBtYYV9C-l0Zoj0zaRb0F-_aWZAkcGnOhTfOVUcQo4RZog5nTfWtDMKwGcoZ2JU6Q6ZYMYgEUL82yUTEFImPM_5PjkI4RkAcoRsj-wjzzhKxifk4m6oetdVzujevdrpU1fq3obpsvXT-7Zp7Gq9_zPo0kdppo--XXld165Z_SQ_lroK9mgzD8nT719_F9fJ7cPVzeLyNjEZz_pEZsJwncfbuUVRgk4plcKgLbHIODW0pKwANJbKUnPDWAmp1JZZA0XBqGWH5Hyd2_n2ZbChV7ULxlaVbmw7BMUhB5bRPIKnX8DndvBN_E1RRMo4pBAhtoaMb0Pwdqk672rt3xSCGptVY7NqbFahVGJUaXSdbKKHorblh2dTZQTONoAORldLrxvjwgcnhOQgReTma652n977_vTVFsdIvqJ0QjGgaUojSzGGKBDq3XVbk_4DEPemmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211237040</pqid></control><display><type>article</type><title>Multiplicative Updates for Nonnegative Quadratic Programming</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Sha, Fei ; Lin, Yuanqing ; Saul, Lawrence K. ; Lee, Daniel D.</creator><creatorcontrib>Sha, Fei ; Lin, Yuanqing ; Saul, Lawrence K. ; Lee, Daniel D.</creatorcontrib><description>Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning. We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/neco.2007.19.8.2004</identifier><identifier>PMID: 17571937</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Animals ; Applied sciences ; Artificial intelligence ; Biological and medical sciences ; Calculus of variations and optimal control ; Computer programming ; Computer science; control theory; systems ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General aspects ; Heuristic ; Humans ; Information Storage and Retrieval - methods ; Learning and adaptive systems ; Mathematical analysis ; Mathematics ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Miscellaneous ; Neural Networks (Computer) ; Optimization ; Programming, Linear ; Sciences and techniques of general use ; Signal Processing, Computer-Assisted</subject><ispartof>Neural computation, 2007-08, Vol.19 (8), p.2004-2031</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright MIT Press Journals Aug 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-958c7a66106e18d0a42298c1ed1b572c2d23b01ce29da7c33d049ae3ec0bb32e3</citedby><cites>FETCH-LOGICAL-c575t-958c7a66106e18d0a42298c1ed1b572c2d23b01ce29da7c33d049ae3ec0bb32e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/neco.2007.19.8.2004$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54008,54009</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18897098$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17571937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sha, Fei</creatorcontrib><creatorcontrib>Lin, Yuanqing</creatorcontrib><creatorcontrib>Saul, Lawrence K.</creatorcontrib><creatorcontrib>Lee, Daniel D.</creatorcontrib><title>Multiplicative Updates for Nonnegative Quadratic Programming</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning. We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biological and medical sciences</subject><subject>Calculus of variations and optimal control</subject><subject>Computer programming</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Heuristic</subject><subject>Humans</subject><subject>Information Storage and Retrieval - methods</subject><subject>Learning and adaptive systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Miscellaneous</subject><subject>Neural Networks (Computer)</subject><subject>Optimization</subject><subject>Programming, Linear</subject><subject>Sciences and techniques of general use</subject><subject>Signal Processing, Computer-Assisted</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kFtLJDEQhYO46Oj6CwQZBH3rmaqku5OALzLsquBtYYV9C-l0Zoj0zaRb0F-_aWZAkcGnOhTfOVUcQo4RZog5nTfWtDMKwGcoZ2JU6Q6ZYMYgEUL82yUTEFImPM_5PjkI4RkAcoRsj-wjzzhKxifk4m6oetdVzujevdrpU1fq3obpsvXT-7Zp7Gq9_zPo0kdppo--XXld165Z_SQ_lroK9mgzD8nT719_F9fJ7cPVzeLyNjEZz_pEZsJwncfbuUVRgk4plcKgLbHIODW0pKwANJbKUnPDWAmp1JZZA0XBqGWH5Hyd2_n2ZbChV7ULxlaVbmw7BMUhB5bRPIKnX8DndvBN_E1RRMo4pBAhtoaMb0Pwdqk672rt3xSCGptVY7NqbFahVGJUaXSdbKKHorblh2dTZQTONoAORldLrxvjwgcnhOQgReTma652n977_vTVFsdIvqJ0QjGgaUojSzGGKBDq3XVbk_4DEPemmQ</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Sha, Fei</creator><creator>Lin, Yuanqing</creator><creator>Saul, Lawrence K.</creator><creator>Lee, Daniel D.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20070801</creationdate><title>Multiplicative Updates for Nonnegative Quadratic Programming</title><author>Sha, Fei ; Lin, Yuanqing ; Saul, Lawrence K. ; Lee, Daniel D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-958c7a66106e18d0a42298c1ed1b572c2d23b01ce29da7c33d049ae3ec0bb32e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biological and medical sciences</topic><topic>Calculus of variations and optimal control</topic><topic>Computer programming</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Heuristic</topic><topic>Humans</topic><topic>Information Storage and Retrieval - methods</topic><topic>Learning and adaptive systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Miscellaneous</topic><topic>Neural Networks (Computer)</topic><topic>Optimization</topic><topic>Programming, Linear</topic><topic>Sciences and techniques of general use</topic><topic>Signal Processing, Computer-Assisted</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sha, Fei</creatorcontrib><creatorcontrib>Lin, Yuanqing</creatorcontrib><creatorcontrib>Saul, Lawrence K.</creatorcontrib><creatorcontrib>Lee, Daniel D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sha, Fei</au><au>Lin, Yuanqing</au><au>Saul, Lawrence K.</au><au>Lee, Daniel D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplicative Updates for Nonnegative Quadratic Programming</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>19</volume><issue>8</issue><spage>2004</spage><epage>2031</epage><pages>2004-2031</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning. We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>17571937</pmid><doi>10.1162/neco.2007.19.8.2004</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2007-08, Vol.19 (8), p.2004-2031 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_pubmed_primary_17571937 |
source | MEDLINE; MIT Press Journals |
subjects | Algorithms Animals Applied sciences Artificial intelligence Biological and medical sciences Calculus of variations and optimal control Computer programming Computer science control theory systems Exact sciences and technology Fundamental and applied biological sciences. Psychology General aspects Heuristic Humans Information Storage and Retrieval - methods Learning and adaptive systems Mathematical analysis Mathematics Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Miscellaneous Neural Networks (Computer) Optimization Programming, Linear Sciences and techniques of general use Signal Processing, Computer-Assisted |
title | Multiplicative Updates for Nonnegative Quadratic Programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplicative%20Updates%20for%20Nonnegative%20Quadratic%20Programming&rft.jtitle=Neural%20computation&rft.au=Sha,%20Fei&rft.date=2007-08-01&rft.volume=19&rft.issue=8&rft.spage=2004&rft.epage=2031&rft.pages=2004-2031&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/neco.2007.19.8.2004&rft_dat=%3Cproquest_pubme%3E1290784991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211237040&rft_id=info:pmid/17571937&rfr_iscdi=true |