Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast

Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2007-08, Vol.73 (15), p.4824-4831
Hauptverfasser: Panadero, Joaquín, Hernández-López, Maria José, Prieto, José Antonio, Randez-Gil, Francisca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4831
container_issue 15
container_start_page 4824
container_title Applied and Environmental Microbiology
container_volume 73
creator Panadero, Joaquín
Hernández-López, Maria José
Prieto, José Antonio
Randez-Gil, Francisca
description Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive transcriptional factors and pathways in conferring freeze resistance has not yet been examined. Here, we have investigated the role of the salt-responsive calcineurin-Crz1p pathway in mediating tolerance to freezing by industrial baker's yeast. Overexpression of CRZ1 in the industrial HS13 strain increased both salt and freeze tolerance and improved the leavening ability of baker's yeast in high-sugar dough. Moreover, engineered cells were able to produce more gas during fermentation of prefrozen dough than the parental strain. Similar effects were observed for overexpression of TdCRZ1, the homologue to CRZ1 in Torulaspora delbrueckii, suggesting that expression of calcineurin-Crz1p target genes can alleviate the harmful effects of ionic stress during freezing. However, overexpression of STZ and FTZ, two unrelated Arabidopsis thaliana genes encoding Cys₂/His₂-type zinc finger proteins, also conferred freeze resistance in yeast. Furthermore, experiments with Δcnb1 and Δcrz1 mutants failed to show a freeze-sensitive phenotype, even in cells pretreated with NaCl. Overall, our results demonstrate that overexpression of CRZ1 has the potential to be a useful tool for increasing freeze tolerance and fermentative capacity in industrial strains. However, these effects do not appear to be mediated through activation of known salt-responding pathways.
doi_str_mv 10.1128/AEM.02651-06
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17557846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19992727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-c1b728713917c15c4b90e99a67fa032485b10e6ccb2beb133c2f7516a1328e6f3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhlcIREPhxhlWSMCFLTP2rj8uSCVKAKmoCNIDXCyvM5u43Y9gbwLlwl9n00QEuHDySH706J15k-QhwgkiUy9PJ-9PgIkCMxC3khGCVlnBubidjAC0zhjL4Si5F-MlAOQg1N3kCGVRSJWLUfLzfEOBvq8Cxei7Nu2qtF9SOra18y2tg2_TmQ0L6tPxxy-Yfgjdxs8pptNA9IPSWVdTsK2j1LbzdNIut3O8UUwpNNT2tvebrW9lne-vt_7X9orC85h-Jhv7-8mdytaRHuzf4-RiOpmN32Zn52_ejU_PMlcw7DOHpWRKItcoHRYuLzWQ1lbIygJnuSpKBBLOlaykEjl3rJIFCoucKRIVP05e7byrddnQ3A3Jgq3NKvjGhmvTWW_-_mn90iy6jUFdIKAeBM_2gtB9XVPsTeOjo7q2LXXraCQMN1UC_wui1ppJJgfwyT_gZbcO7XAFw6DQUirNBujFDnKhizFQ9Tsygtn2b4b-zU3_BsSAP_pzzQO8L3wAnu4BG52tq215Ph44pSXTAIdwS79YfvOBjI2NsdQYyQ0WJlcsH6DHO6iynbGLMIguPjFADiA1z1HxX4bOzOE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205977892</pqid></control><display><type>article</type><title>Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Panadero, Joaquín ; Hernández-López, Maria José ; Prieto, José Antonio ; Randez-Gil, Francisca</creator><creatorcontrib>Panadero, Joaquín ; Hernández-López, Maria José ; Prieto, José Antonio ; Randez-Gil, Francisca</creatorcontrib><description>Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive transcriptional factors and pathways in conferring freeze resistance has not yet been examined. Here, we have investigated the role of the salt-responsive calcineurin-Crz1p pathway in mediating tolerance to freezing by industrial baker's yeast. Overexpression of CRZ1 in the industrial HS13 strain increased both salt and freeze tolerance and improved the leavening ability of baker's yeast in high-sugar dough. Moreover, engineered cells were able to produce more gas during fermentation of prefrozen dough than the parental strain. Similar effects were observed for overexpression of TdCRZ1, the homologue to CRZ1 in Torulaspora delbrueckii, suggesting that expression of calcineurin-Crz1p target genes can alleviate the harmful effects of ionic stress during freezing. However, overexpression of STZ and FTZ, two unrelated Arabidopsis thaliana genes encoding Cys₂/His₂-type zinc finger proteins, also conferred freeze resistance in yeast. Furthermore, experiments with Δcnb1 and Δcrz1 mutants failed to show a freeze-sensitive phenotype, even in cells pretreated with NaCl. Overall, our results demonstrate that overexpression of CRZ1 has the potential to be a useful tool for increasing freeze tolerance and fermentative capacity in industrial strains. However, these effects do not appear to be mediated through activation of known salt-responding pathways.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.02651-06</identifier><identifier>PMID: 17557846</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Arabidopsis thaliana ; Biological and medical sciences ; Bread - microbiology ; Calcineurin - metabolism ; Cells ; DNA-Binding Proteins ; Fermentation ; Freezing ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Fungal ; Industrial Microbiology - methods ; Microbiology ; Physiology and Biotechnology ; Proteins ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Torulaspora delbrueckii ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors ; Up-Regulation ; Yeast ; Zinc Fingers</subject><ispartof>Applied and Environmental Microbiology, 2007-08, Vol.73 (15), p.4824-4831</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Aug 2007</rights><rights>Copyright © 2007, American Society for Microbiology 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-c1b728713917c15c4b90e99a67fa032485b10e6ccb2beb133c2f7516a1328e6f3</citedby><cites>FETCH-LOGICAL-c521t-c1b728713917c15c4b90e99a67fa032485b10e6ccb2beb133c2f7516a1328e6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951019/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951019/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3186,3187,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18972900$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17557846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Panadero, Joaquín</creatorcontrib><creatorcontrib>Hernández-López, Maria José</creatorcontrib><creatorcontrib>Prieto, José Antonio</creatorcontrib><creatorcontrib>Randez-Gil, Francisca</creatorcontrib><title>Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive transcriptional factors and pathways in conferring freeze resistance has not yet been examined. Here, we have investigated the role of the salt-responsive calcineurin-Crz1p pathway in mediating tolerance to freezing by industrial baker's yeast. Overexpression of CRZ1 in the industrial HS13 strain increased both salt and freeze tolerance and improved the leavening ability of baker's yeast in high-sugar dough. Moreover, engineered cells were able to produce more gas during fermentation of prefrozen dough than the parental strain. Similar effects were observed for overexpression of TdCRZ1, the homologue to CRZ1 in Torulaspora delbrueckii, suggesting that expression of calcineurin-Crz1p target genes can alleviate the harmful effects of ionic stress during freezing. However, overexpression of STZ and FTZ, two unrelated Arabidopsis thaliana genes encoding Cys₂/His₂-type zinc finger proteins, also conferred freeze resistance in yeast. Furthermore, experiments with Δcnb1 and Δcrz1 mutants failed to show a freeze-sensitive phenotype, even in cells pretreated with NaCl. Overall, our results demonstrate that overexpression of CRZ1 has the potential to be a useful tool for increasing freeze tolerance and fermentative capacity in industrial strains. However, these effects do not appear to be mediated through activation of known salt-responding pathways.</description><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>Bread - microbiology</subject><subject>Calcineurin - metabolism</subject><subject>Cells</subject><subject>DNA-Binding Proteins</subject><subject>Fermentation</subject><subject>Freezing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Industrial Microbiology - methods</subject><subject>Microbiology</subject><subject>Physiology and Biotechnology</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Torulaspora delbrueckii</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors</subject><subject>Up-Regulation</subject><subject>Yeast</subject><subject>Zinc Fingers</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhlcIREPhxhlWSMCFLTP2rj8uSCVKAKmoCNIDXCyvM5u43Y9gbwLlwl9n00QEuHDySH706J15k-QhwgkiUy9PJ-9PgIkCMxC3khGCVlnBubidjAC0zhjL4Si5F-MlAOQg1N3kCGVRSJWLUfLzfEOBvq8Cxei7Nu2qtF9SOra18y2tg2_TmQ0L6tPxxy-Yfgjdxs8pptNA9IPSWVdTsK2j1LbzdNIut3O8UUwpNNT2tvebrW9lne-vt_7X9orC85h-Jhv7-8mdytaRHuzf4-RiOpmN32Zn52_ejU_PMlcw7DOHpWRKItcoHRYuLzWQ1lbIygJnuSpKBBLOlaykEjl3rJIFCoucKRIVP05e7byrddnQ3A3Jgq3NKvjGhmvTWW_-_mn90iy6jUFdIKAeBM_2gtB9XVPsTeOjo7q2LXXraCQMN1UC_wui1ppJJgfwyT_gZbcO7XAFw6DQUirNBujFDnKhizFQ9Tsygtn2b4b-zU3_BsSAP_pzzQO8L3wAnu4BG52tq215Ph44pSXTAIdwS79YfvOBjI2NsdQYyQ0WJlcsH6DHO6iynbGLMIguPjFADiA1z1HxX4bOzOE</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Panadero, Joaquín</creator><creator>Hernández-López, Maria José</creator><creator>Prieto, José Antonio</creator><creator>Randez-Gil, Francisca</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070801</creationdate><title>Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast</title><author>Panadero, Joaquín ; Hernández-López, Maria José ; Prieto, José Antonio ; Randez-Gil, Francisca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-c1b728713917c15c4b90e99a67fa032485b10e6ccb2beb133c2f7516a1328e6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>Bread - microbiology</topic><topic>Calcineurin - metabolism</topic><topic>Cells</topic><topic>DNA-Binding Proteins</topic><topic>Fermentation</topic><topic>Freezing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Industrial Microbiology - methods</topic><topic>Microbiology</topic><topic>Physiology and Biotechnology</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Torulaspora delbrueckii</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors</topic><topic>Up-Regulation</topic><topic>Yeast</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panadero, Joaquín</creatorcontrib><creatorcontrib>Hernández-López, Maria José</creatorcontrib><creatorcontrib>Prieto, José Antonio</creatorcontrib><creatorcontrib>Randez-Gil, Francisca</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panadero, Joaquín</au><au>Hernández-López, Maria José</au><au>Prieto, José Antonio</au><au>Randez-Gil, Francisca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>73</volume><issue>15</issue><spage>4824</spage><epage>4831</epage><pages>4824-4831</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive transcriptional factors and pathways in conferring freeze resistance has not yet been examined. Here, we have investigated the role of the salt-responsive calcineurin-Crz1p pathway in mediating tolerance to freezing by industrial baker's yeast. Overexpression of CRZ1 in the industrial HS13 strain increased both salt and freeze tolerance and improved the leavening ability of baker's yeast in high-sugar dough. Moreover, engineered cells were able to produce more gas during fermentation of prefrozen dough than the parental strain. Similar effects were observed for overexpression of TdCRZ1, the homologue to CRZ1 in Torulaspora delbrueckii, suggesting that expression of calcineurin-Crz1p target genes can alleviate the harmful effects of ionic stress during freezing. However, overexpression of STZ and FTZ, two unrelated Arabidopsis thaliana genes encoding Cys₂/His₂-type zinc finger proteins, also conferred freeze resistance in yeast. Furthermore, experiments with Δcnb1 and Δcrz1 mutants failed to show a freeze-sensitive phenotype, even in cells pretreated with NaCl. Overall, our results demonstrate that overexpression of CRZ1 has the potential to be a useful tool for increasing freeze tolerance and fermentative capacity in industrial strains. However, these effects do not appear to be mediated through activation of known salt-responding pathways.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>17557846</pmid><doi>10.1128/AEM.02651-06</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2007-08, Vol.73 (15), p.4824-4831
issn 0099-2240
1098-5336
language eng
recordid cdi_pubmed_primary_17557846
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Arabidopsis thaliana
Biological and medical sciences
Bread - microbiology
Calcineurin - metabolism
Cells
DNA-Binding Proteins
Fermentation
Freezing
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Fungal
Industrial Microbiology - methods
Microbiology
Physiology and Biotechnology
Proteins
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - physiology
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Torulaspora delbrueckii
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription Factors
Up-Regulation
Yeast
Zinc Fingers
title Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20the%20Calcineurin%20Target%20CRZ1%20Provides%20Freeze%20Tolerance%20and%20Enhances%20the%20Fermentative%20Capacity%20of%20Baker's%20Yeast&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Panadero,%20Joaqu%C3%ADn&rft.date=2007-08-01&rft.volume=73&rft.issue=15&rft.spage=4824&rft.epage=4831&rft.pages=4824-4831&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.02651-06&rft_dat=%3Cproquest_pubme%3E19992727%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205977892&rft_id=info:pmid/17557846&rfr_iscdi=true