Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast
Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stres...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2007-08, Vol.73 (15), p.4824-4831 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4831 |
---|---|
container_issue | 15 |
container_start_page | 4824 |
container_title | Applied and Environmental Microbiology |
container_volume | 73 |
creator | Panadero, Joaquín Hernández-López, Maria José Prieto, José Antonio Randez-Gil, Francisca |
description | Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive transcriptional factors and pathways in conferring freeze resistance has not yet been examined. Here, we have investigated the role of the salt-responsive calcineurin-Crz1p pathway in mediating tolerance to freezing by industrial baker's yeast. Overexpression of CRZ1 in the industrial HS13 strain increased both salt and freeze tolerance and improved the leavening ability of baker's yeast in high-sugar dough. Moreover, engineered cells were able to produce more gas during fermentation of prefrozen dough than the parental strain. Similar effects were observed for overexpression of TdCRZ1, the homologue to CRZ1 in Torulaspora delbrueckii, suggesting that expression of calcineurin-Crz1p target genes can alleviate the harmful effects of ionic stress during freezing. However, overexpression of STZ and FTZ, two unrelated Arabidopsis thaliana genes encoding Cys₂/His₂-type zinc finger proteins, also conferred freeze resistance in yeast. Furthermore, experiments with Δcnb1 and Δcrz1 mutants failed to show a freeze-sensitive phenotype, even in cells pretreated with NaCl. Overall, our results demonstrate that overexpression of CRZ1 has the potential to be a useful tool for increasing freeze tolerance and fermentative capacity in industrial strains. However, these effects do not appear to be mediated through activation of known salt-responding pathways. |
doi_str_mv | 10.1128/AEM.02651-06 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17557846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19992727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-c1b728713917c15c4b90e99a67fa032485b10e6ccb2beb133c2f7516a1328e6f3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhlcIREPhxhlWSMCFLTP2rj8uSCVKAKmoCNIDXCyvM5u43Y9gbwLlwl9n00QEuHDySH706J15k-QhwgkiUy9PJ-9PgIkCMxC3khGCVlnBubidjAC0zhjL4Si5F-MlAOQg1N3kCGVRSJWLUfLzfEOBvq8Cxei7Nu2qtF9SOra18y2tg2_TmQ0L6tPxxy-Yfgjdxs8pptNA9IPSWVdTsK2j1LbzdNIut3O8UUwpNNT2tvebrW9lne-vt_7X9orC85h-Jhv7-8mdytaRHuzf4-RiOpmN32Zn52_ejU_PMlcw7DOHpWRKItcoHRYuLzWQ1lbIygJnuSpKBBLOlaykEjl3rJIFCoucKRIVP05e7byrddnQ3A3Jgq3NKvjGhmvTWW_-_mn90iy6jUFdIKAeBM_2gtB9XVPsTeOjo7q2LXXraCQMN1UC_wui1ppJJgfwyT_gZbcO7XAFw6DQUirNBujFDnKhizFQ9Tsygtn2b4b-zU3_BsSAP_pzzQO8L3wAnu4BG52tq215Ph44pSXTAIdwS79YfvOBjI2NsdQYyQ0WJlcsH6DHO6iynbGLMIguPjFADiA1z1HxX4bOzOE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205977892</pqid></control><display><type>article</type><title>Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Panadero, Joaquín ; Hernández-López, Maria José ; Prieto, José Antonio ; Randez-Gil, Francisca</creator><creatorcontrib>Panadero, Joaquín ; Hernández-López, Maria José ; Prieto, José Antonio ; Randez-Gil, Francisca</creatorcontrib><description>Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive transcriptional factors and pathways in conferring freeze resistance has not yet been examined. Here, we have investigated the role of the salt-responsive calcineurin-Crz1p pathway in mediating tolerance to freezing by industrial baker's yeast. Overexpression of CRZ1 in the industrial HS13 strain increased both salt and freeze tolerance and improved the leavening ability of baker's yeast in high-sugar dough. Moreover, engineered cells were able to produce more gas during fermentation of prefrozen dough than the parental strain. Similar effects were observed for overexpression of TdCRZ1, the homologue to CRZ1 in Torulaspora delbrueckii, suggesting that expression of calcineurin-Crz1p target genes can alleviate the harmful effects of ionic stress during freezing. However, overexpression of STZ and FTZ, two unrelated Arabidopsis thaliana genes encoding Cys₂/His₂-type zinc finger proteins, also conferred freeze resistance in yeast. Furthermore, experiments with Δcnb1 and Δcrz1 mutants failed to show a freeze-sensitive phenotype, even in cells pretreated with NaCl. Overall, our results demonstrate that overexpression of CRZ1 has the potential to be a useful tool for increasing freeze tolerance and fermentative capacity in industrial strains. However, these effects do not appear to be mediated through activation of known salt-responding pathways.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.02651-06</identifier><identifier>PMID: 17557846</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Arabidopsis thaliana ; Biological and medical sciences ; Bread - microbiology ; Calcineurin - metabolism ; Cells ; DNA-Binding Proteins ; Fermentation ; Freezing ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Fungal ; Industrial Microbiology - methods ; Microbiology ; Physiology and Biotechnology ; Proteins ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Torulaspora delbrueckii ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors ; Up-Regulation ; Yeast ; Zinc Fingers</subject><ispartof>Applied and Environmental Microbiology, 2007-08, Vol.73 (15), p.4824-4831</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Aug 2007</rights><rights>Copyright © 2007, American Society for Microbiology 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-c1b728713917c15c4b90e99a67fa032485b10e6ccb2beb133c2f7516a1328e6f3</citedby><cites>FETCH-LOGICAL-c521t-c1b728713917c15c4b90e99a67fa032485b10e6ccb2beb133c2f7516a1328e6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951019/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951019/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3186,3187,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18972900$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17557846$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Panadero, Joaquín</creatorcontrib><creatorcontrib>Hernández-López, Maria José</creatorcontrib><creatorcontrib>Prieto, José Antonio</creatorcontrib><creatorcontrib>Randez-Gil, Francisca</creatorcontrib><title>Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive transcriptional factors and pathways in conferring freeze resistance has not yet been examined. Here, we have investigated the role of the salt-responsive calcineurin-Crz1p pathway in mediating tolerance to freezing by industrial baker's yeast. Overexpression of CRZ1 in the industrial HS13 strain increased both salt and freeze tolerance and improved the leavening ability of baker's yeast in high-sugar dough. Moreover, engineered cells were able to produce more gas during fermentation of prefrozen dough than the parental strain. Similar effects were observed for overexpression of TdCRZ1, the homologue to CRZ1 in Torulaspora delbrueckii, suggesting that expression of calcineurin-Crz1p target genes can alleviate the harmful effects of ionic stress during freezing. However, overexpression of STZ and FTZ, two unrelated Arabidopsis thaliana genes encoding Cys₂/His₂-type zinc finger proteins, also conferred freeze resistance in yeast. Furthermore, experiments with Δcnb1 and Δcrz1 mutants failed to show a freeze-sensitive phenotype, even in cells pretreated with NaCl. Overall, our results demonstrate that overexpression of CRZ1 has the potential to be a useful tool for increasing freeze tolerance and fermentative capacity in industrial strains. However, these effects do not appear to be mediated through activation of known salt-responding pathways.</description><subject>Arabidopsis thaliana</subject><subject>Biological and medical sciences</subject><subject>Bread - microbiology</subject><subject>Calcineurin - metabolism</subject><subject>Cells</subject><subject>DNA-Binding Proteins</subject><subject>Fermentation</subject><subject>Freezing</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Industrial Microbiology - methods</subject><subject>Microbiology</subject><subject>Physiology and Biotechnology</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Torulaspora delbrueckii</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors</subject><subject>Up-Regulation</subject><subject>Yeast</subject><subject>Zinc Fingers</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhlcIREPhxhlWSMCFLTP2rj8uSCVKAKmoCNIDXCyvM5u43Y9gbwLlwl9n00QEuHDySH706J15k-QhwgkiUy9PJ-9PgIkCMxC3khGCVlnBubidjAC0zhjL4Si5F-MlAOQg1N3kCGVRSJWLUfLzfEOBvq8Cxei7Nu2qtF9SOra18y2tg2_TmQ0L6tPxxy-Yfgjdxs8pptNA9IPSWVdTsK2j1LbzdNIut3O8UUwpNNT2tvebrW9lne-vt_7X9orC85h-Jhv7-8mdytaRHuzf4-RiOpmN32Zn52_ejU_PMlcw7DOHpWRKItcoHRYuLzWQ1lbIygJnuSpKBBLOlaykEjl3rJIFCoucKRIVP05e7byrddnQ3A3Jgq3NKvjGhmvTWW_-_mn90iy6jUFdIKAeBM_2gtB9XVPsTeOjo7q2LXXraCQMN1UC_wui1ppJJgfwyT_gZbcO7XAFw6DQUirNBujFDnKhizFQ9Tsygtn2b4b-zU3_BsSAP_pzzQO8L3wAnu4BG52tq215Ph44pSXTAIdwS79YfvOBjI2NsdQYyQ0WJlcsH6DHO6iynbGLMIguPjFADiA1z1HxX4bOzOE</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Panadero, Joaquín</creator><creator>Hernández-López, Maria José</creator><creator>Prieto, José Antonio</creator><creator>Randez-Gil, Francisca</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070801</creationdate><title>Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast</title><author>Panadero, Joaquín ; Hernández-López, Maria José ; Prieto, José Antonio ; Randez-Gil, Francisca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-c1b728713917c15c4b90e99a67fa032485b10e6ccb2beb133c2f7516a1328e6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Arabidopsis thaliana</topic><topic>Biological and medical sciences</topic><topic>Bread - microbiology</topic><topic>Calcineurin - metabolism</topic><topic>Cells</topic><topic>DNA-Binding Proteins</topic><topic>Fermentation</topic><topic>Freezing</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Industrial Microbiology - methods</topic><topic>Microbiology</topic><topic>Physiology and Biotechnology</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Torulaspora delbrueckii</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors</topic><topic>Up-Regulation</topic><topic>Yeast</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panadero, Joaquín</creatorcontrib><creatorcontrib>Hernández-López, Maria José</creatorcontrib><creatorcontrib>Prieto, José Antonio</creatorcontrib><creatorcontrib>Randez-Gil, Francisca</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panadero, Joaquín</au><au>Hernández-López, Maria José</au><au>Prieto, José Antonio</au><au>Randez-Gil, Francisca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2007-08-01</date><risdate>2007</risdate><volume>73</volume><issue>15</issue><spage>4824</spage><epage>4831</epage><pages>4824-4831</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive transcriptional factors and pathways in conferring freeze resistance has not yet been examined. Here, we have investigated the role of the salt-responsive calcineurin-Crz1p pathway in mediating tolerance to freezing by industrial baker's yeast. Overexpression of CRZ1 in the industrial HS13 strain increased both salt and freeze tolerance and improved the leavening ability of baker's yeast in high-sugar dough. Moreover, engineered cells were able to produce more gas during fermentation of prefrozen dough than the parental strain. Similar effects were observed for overexpression of TdCRZ1, the homologue to CRZ1 in Torulaspora delbrueckii, suggesting that expression of calcineurin-Crz1p target genes can alleviate the harmful effects of ionic stress during freezing. However, overexpression of STZ and FTZ, two unrelated Arabidopsis thaliana genes encoding Cys₂/His₂-type zinc finger proteins, also conferred freeze resistance in yeast. Furthermore, experiments with Δcnb1 and Δcrz1 mutants failed to show a freeze-sensitive phenotype, even in cells pretreated with NaCl. Overall, our results demonstrate that overexpression of CRZ1 has the potential to be a useful tool for increasing freeze tolerance and fermentative capacity in industrial strains. However, these effects do not appear to be mediated through activation of known salt-responding pathways.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>17557846</pmid><doi>10.1128/AEM.02651-06</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 2007-08, Vol.73 (15), p.4824-4831 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_pubmed_primary_17557846 |
source | American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | Arabidopsis thaliana Biological and medical sciences Bread - microbiology Calcineurin - metabolism Cells DNA-Binding Proteins Fermentation Freezing Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Fungal Industrial Microbiology - methods Microbiology Physiology and Biotechnology Proteins Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae - physiology Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Torulaspora delbrueckii Trans-Activators - genetics Trans-Activators - metabolism Transcription Factors Up-Regulation Yeast Zinc Fingers |
title | Overexpression of the Calcineurin Target CRZ1 Provides Freeze Tolerance and Enhances the Fermentative Capacity of Baker's Yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20the%20Calcineurin%20Target%20CRZ1%20Provides%20Freeze%20Tolerance%20and%20Enhances%20the%20Fermentative%20Capacity%20of%20Baker's%20Yeast&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Panadero,%20Joaqu%C3%ADn&rft.date=2007-08-01&rft.volume=73&rft.issue=15&rft.spage=4824&rft.epage=4831&rft.pages=4824-4831&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.02651-06&rft_dat=%3Cproquest_pubme%3E19992727%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205977892&rft_id=info:pmid/17557846&rfr_iscdi=true |