origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture
Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic e...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-05, Vol.104 (22), p.9358-9363 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9363 |
---|---|
container_issue | 22 |
container_start_page | 9358 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Caetano-Anollés, Gustavo Kim, Hee Shin Mittenthal, Jay E |
description | Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world. |
doi_str_mv | 10.1073/pnas.0701214104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17517598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25427858</jstor_id><sourcerecordid>25427858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-1e0da0db6d8cdde0f8c45cf2caa25804076fd7c158fe8f686ab7ad8c4564fc2e3</originalsourceid><addsrcrecordid>eNqF0c-PEyEUB_CJ0bh19exJnXgwXrr7YPg1FxOz8VeyiQfdM6HMo6XODBUYtf-9TNpsVw-aQDjw4cuDV1VPCVwQkM3lbjTpAiQQShgBdq9aEGjJUrAW7lcLACqXilF2Vj1KaQsALVfwsDojkpfRqkWlQ_RrP9bB1UPoMI71gNmsQu9tPWL-GeK3VPvRYYzY1S6God5t9n1Y4xiGYsxo-n3yaQ7YxZCxZJloNz6jzVPEx9UDZ_qET47reXXz_t3Xq4_L688fPl29vV5aQVReEoTOQLcSnbJdh-CUZdw6ao2hpWQGUrhOWsKVQ-WEEmYlTTcjwZyl2JxXbw65u2k1YGdxzNH0ehf9YOJeB-P1nzuj3-h1-KGJaoG1bQl4dQyI4fuEKevBJ4t9b0YMU9ISOJdC8P9CCg0TUsgCX_4Ft2GK5b9mQxouOKEFXR6QjSGliO62ZAJ6brGeW6xPLS4nnt996ckfe1rAiyOYT57imKZUtw2fxet_C-2mvs_4Kxf67EC3KYd4aylnVCp-5zJngjbr6JO--TI_D0CqMpvmN9Mw0J8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201356512</pqid></control><display><type>article</type><title>origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Caetano-Anollés, Gustavo ; Kim, Hee Shin ; Mittenthal, Jay E</creator><creatorcontrib>Caetano-Anollés, Gustavo ; Kim, Hee Shin ; Mittenthal, Jay E</creatorcontrib><description>Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0701214104</identifier><identifier>PMID: 17517598</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Architecture ; Biochemistry ; Biological Sciences ; Biosynthesis ; Cellular metabolism ; Enzymes ; Evolution ; Evolution, Molecular ; Evolutionary biology ; Genomics ; Metabolic Networks and Pathways ; Metabolism ; Nitrogen metabolism ; Nucleotides ; Nucleotides - genetics ; Phylogenetics ; Phylogeny ; Protein folding ; Protein metabolism ; Proteins - chemistry ; Proteins - genetics ; Proteins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (22), p.9358-9363</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 29, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-1e0da0db6d8cdde0f8c45cf2caa25804076fd7c158fe8f686ab7ad8c4564fc2e3</citedby><cites>FETCH-LOGICAL-c618t-1e0da0db6d8cdde0f8c45cf2caa25804076fd7c158fe8f686ab7ad8c4564fc2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25427858$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25427858$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17517598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caetano-Anollés, Gustavo</creatorcontrib><creatorcontrib>Kim, Hee Shin</creatorcontrib><creatorcontrib>Mittenthal, Jay E</creatorcontrib><title>origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world.</description><subject>Architecture</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cellular metabolism</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary biology</subject><subject>Genomics</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Nitrogen metabolism</subject><subject>Nucleotides</subject><subject>Nucleotides - genetics</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Protein folding</subject><subject>Protein metabolism</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c-PEyEUB_CJ0bh19exJnXgwXrr7YPg1FxOz8VeyiQfdM6HMo6XODBUYtf-9TNpsVw-aQDjw4cuDV1VPCVwQkM3lbjTpAiQQShgBdq9aEGjJUrAW7lcLACqXilF2Vj1KaQsALVfwsDojkpfRqkWlQ_RrP9bB1UPoMI71gNmsQu9tPWL-GeK3VPvRYYzY1S6God5t9n1Y4xiGYsxo-n3yaQ7YxZCxZJloNz6jzVPEx9UDZ_qET47reXXz_t3Xq4_L688fPl29vV5aQVReEoTOQLcSnbJdh-CUZdw6ao2hpWQGUrhOWsKVQ-WEEmYlTTcjwZyl2JxXbw65u2k1YGdxzNH0ehf9YOJeB-P1nzuj3-h1-KGJaoG1bQl4dQyI4fuEKevBJ4t9b0YMU9ISOJdC8P9CCg0TUsgCX_4Ft2GK5b9mQxouOKEFXR6QjSGliO62ZAJ6brGeW6xPLS4nnt996ckfe1rAiyOYT57imKZUtw2fxet_C-2mvs_4Kxf67EC3KYd4aylnVCp-5zJngjbr6JO--TI_D0CqMpvmN9Mw0J8</recordid><startdate>20070529</startdate><enddate>20070529</enddate><creator>Caetano-Anollés, Gustavo</creator><creator>Kim, Hee Shin</creator><creator>Mittenthal, Jay E</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070529</creationdate><title>origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture</title><author>Caetano-Anollés, Gustavo ; Kim, Hee Shin ; Mittenthal, Jay E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-1e0da0db6d8cdde0f8c45cf2caa25804076fd7c158fe8f686ab7ad8c4564fc2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Architecture</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cellular metabolism</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary biology</topic><topic>Genomics</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Nitrogen metabolism</topic><topic>Nucleotides</topic><topic>Nucleotides - genetics</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Protein folding</topic><topic>Protein metabolism</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caetano-Anollés, Gustavo</creatorcontrib><creatorcontrib>Kim, Hee Shin</creatorcontrib><creatorcontrib>Mittenthal, Jay E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caetano-Anollés, Gustavo</au><au>Kim, Hee Shin</au><au>Mittenthal, Jay E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-05-29</date><risdate>2007</risdate><volume>104</volume><issue>22</issue><spage>9358</spage><epage>9363</epage><pages>9358-9363</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17517598</pmid><doi>10.1073/pnas.0701214104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (22), p.9358-9363 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_17517598 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Architecture Biochemistry Biological Sciences Biosynthesis Cellular metabolism Enzymes Evolution Evolution, Molecular Evolutionary biology Genomics Metabolic Networks and Pathways Metabolism Nitrogen metabolism Nucleotides Nucleotides - genetics Phylogenetics Phylogeny Protein folding Protein metabolism Proteins - chemistry Proteins - genetics Proteins - metabolism |
title | origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=origin%20of%20modern%20metabolic%20networks%20inferred%20from%20phylogenomic%20analysis%20of%20protein%20architecture&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Caetano-Anoll%C3%A9s,%20Gustavo&rft.date=2007-05-29&rft.volume=104&rft.issue=22&rft.spage=9358&rft.epage=9363&rft.pages=9358-9363&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0701214104&rft_dat=%3Cjstor_pubme%3E25427858%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201356512&rft_id=info:pmid/17517598&rft_jstor_id=25427858&rfr_iscdi=true |