origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture

Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-05, Vol.104 (22), p.9358-9363
Hauptverfasser: Caetano-Anollés, Gustavo, Kim, Hee Shin, Mittenthal, Jay E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9363
container_issue 22
container_start_page 9358
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Caetano-Anollés, Gustavo
Kim, Hee Shin
Mittenthal, Jay E
description Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world.
doi_str_mv 10.1073/pnas.0701214104
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17517598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25427858</jstor_id><sourcerecordid>25427858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-1e0da0db6d8cdde0f8c45cf2caa25804076fd7c158fe8f686ab7ad8c4564fc2e3</originalsourceid><addsrcrecordid>eNqF0c-PEyEUB_CJ0bh19exJnXgwXrr7YPg1FxOz8VeyiQfdM6HMo6XODBUYtf-9TNpsVw-aQDjw4cuDV1VPCVwQkM3lbjTpAiQQShgBdq9aEGjJUrAW7lcLACqXilF2Vj1KaQsALVfwsDojkpfRqkWlQ_RrP9bB1UPoMI71gNmsQu9tPWL-GeK3VPvRYYzY1S6God5t9n1Y4xiGYsxo-n3yaQ7YxZCxZJloNz6jzVPEx9UDZ_qET47reXXz_t3Xq4_L688fPl29vV5aQVReEoTOQLcSnbJdh-CUZdw6ao2hpWQGUrhOWsKVQ-WEEmYlTTcjwZyl2JxXbw65u2k1YGdxzNH0ehf9YOJeB-P1nzuj3-h1-KGJaoG1bQl4dQyI4fuEKevBJ4t9b0YMU9ISOJdC8P9CCg0TUsgCX_4Ft2GK5b9mQxouOKEFXR6QjSGliO62ZAJ6brGeW6xPLS4nnt996ckfe1rAiyOYT57imKZUtw2fxet_C-2mvs_4Kxf67EC3KYd4aylnVCp-5zJngjbr6JO--TI_D0CqMpvmN9Mw0J8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201356512</pqid></control><display><type>article</type><title>origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Caetano-Anollés, Gustavo ; Kim, Hee Shin ; Mittenthal, Jay E</creator><creatorcontrib>Caetano-Anollés, Gustavo ; Kim, Hee Shin ; Mittenthal, Jay E</creatorcontrib><description>Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0701214104</identifier><identifier>PMID: 17517598</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Architecture ; Biochemistry ; Biological Sciences ; Biosynthesis ; Cellular metabolism ; Enzymes ; Evolution ; Evolution, Molecular ; Evolutionary biology ; Genomics ; Metabolic Networks and Pathways ; Metabolism ; Nitrogen metabolism ; Nucleotides ; Nucleotides - genetics ; Phylogenetics ; Phylogeny ; Protein folding ; Protein metabolism ; Proteins - chemistry ; Proteins - genetics ; Proteins - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (22), p.9358-9363</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 29, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-1e0da0db6d8cdde0f8c45cf2caa25804076fd7c158fe8f686ab7ad8c4564fc2e3</citedby><cites>FETCH-LOGICAL-c618t-1e0da0db6d8cdde0f8c45cf2caa25804076fd7c158fe8f686ab7ad8c4564fc2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25427858$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25427858$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17517598$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caetano-Anollés, Gustavo</creatorcontrib><creatorcontrib>Kim, Hee Shin</creatorcontrib><creatorcontrib>Mittenthal, Jay E</creatorcontrib><title>origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world.</description><subject>Architecture</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cellular metabolism</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Evolutionary biology</subject><subject>Genomics</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Nitrogen metabolism</subject><subject>Nucleotides</subject><subject>Nucleotides - genetics</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Protein folding</subject><subject>Protein metabolism</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c-PEyEUB_CJ0bh19exJnXgwXrr7YPg1FxOz8VeyiQfdM6HMo6XODBUYtf-9TNpsVw-aQDjw4cuDV1VPCVwQkM3lbjTpAiQQShgBdq9aEGjJUrAW7lcLACqXilF2Vj1KaQsALVfwsDojkpfRqkWlQ_RrP9bB1UPoMI71gNmsQu9tPWL-GeK3VPvRYYzY1S6God5t9n1Y4xiGYsxo-n3yaQ7YxZCxZJloNz6jzVPEx9UDZ_qET47reXXz_t3Xq4_L688fPl29vV5aQVReEoTOQLcSnbJdh-CUZdw6ao2hpWQGUrhOWsKVQ-WEEmYlTTcjwZyl2JxXbw65u2k1YGdxzNH0ehf9YOJeB-P1nzuj3-h1-KGJaoG1bQl4dQyI4fuEKevBJ4t9b0YMU9ISOJdC8P9CCg0TUsgCX_4Ft2GK5b9mQxouOKEFXR6QjSGliO62ZAJ6brGeW6xPLS4nnt996ckfe1rAiyOYT57imKZUtw2fxet_C-2mvs_4Kxf67EC3KYd4aylnVCp-5zJngjbr6JO--TI_D0CqMpvmN9Mw0J8</recordid><startdate>20070529</startdate><enddate>20070529</enddate><creator>Caetano-Anollés, Gustavo</creator><creator>Kim, Hee Shin</creator><creator>Mittenthal, Jay E</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070529</creationdate><title>origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture</title><author>Caetano-Anollés, Gustavo ; Kim, Hee Shin ; Mittenthal, Jay E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-1e0da0db6d8cdde0f8c45cf2caa25804076fd7c158fe8f686ab7ad8c4564fc2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Architecture</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cellular metabolism</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Evolutionary biology</topic><topic>Genomics</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Nitrogen metabolism</topic><topic>Nucleotides</topic><topic>Nucleotides - genetics</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Protein folding</topic><topic>Protein metabolism</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caetano-Anollés, Gustavo</creatorcontrib><creatorcontrib>Kim, Hee Shin</creatorcontrib><creatorcontrib>Mittenthal, Jay E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caetano-Anollés, Gustavo</au><au>Kim, Hee Shin</au><au>Mittenthal, Jay E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-05-29</date><risdate>2007</risdate><volume>104</volume><issue>22</issue><spage>9358</spage><epage>9363</epage><pages>9358-9363</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Metabolism represents a complex collection of enzymatic reactions and transport processes that convert metabolites into molecules capable of supporting cellular life. Here we explore the origins and evolution of modern metabolism. Using phylogenomic information linked to the structure of metabolic enzymes, we sort out recruitment processes and discover that most enzymatic activities were associated with the nine most ancient and widely distributed protein fold architectures. An analysis of newly discovered functions showed enzymatic diversification occurred early, during the onset of the modern protein world. Most importantly, phylogenetic reconstruction exercises and other evidence suggest strongly that metabolism originated in enzymes with the P-loop hydrolase fold in nucleotide metabolism, probably in pathways linked to the purine metabolic subnetwork. Consequently, the first enzymatic takeover of an ancient biochemistry or prebiotic chemistry was related to the synthesis of nucleotides for the RNA world.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17517598</pmid><doi>10.1073/pnas.0701214104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (22), p.9358-9363
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_17517598
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Architecture
Biochemistry
Biological Sciences
Biosynthesis
Cellular metabolism
Enzymes
Evolution
Evolution, Molecular
Evolutionary biology
Genomics
Metabolic Networks and Pathways
Metabolism
Nitrogen metabolism
Nucleotides
Nucleotides - genetics
Phylogenetics
Phylogeny
Protein folding
Protein metabolism
Proteins - chemistry
Proteins - genetics
Proteins - metabolism
title origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=origin%20of%20modern%20metabolic%20networks%20inferred%20from%20phylogenomic%20analysis%20of%20protein%20architecture&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Caetano-Anoll%C3%A9s,%20Gustavo&rft.date=2007-05-29&rft.volume=104&rft.issue=22&rft.spage=9358&rft.epage=9363&rft.pages=9358-9363&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0701214104&rft_dat=%3Cjstor_pubme%3E25427858%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201356512&rft_id=info:pmid/17517598&rft_jstor_id=25427858&rfr_iscdi=true