High content screen microscopy analysis of A beta 1-42-induced neurite outgrowth reduction in rat primary cortical neurons: neuroprotective effects of alpha 7 neuronal nicotinic acetylcholine receptor ligands
beta-Amyloid peptide 1-42 (A beta(1-42)) is generated from amyloid precursor protein (APP) and associated with neurodegeneration in Alzheimer's disease (AD). A beta(1-42) has been shown to be cytotoxic when incubated with cultured neurons. However, APP transgenic mice over-expressing A beta(1-4...
Gespeichert in:
Veröffentlicht in: | Brain research 2007-06, Vol.1151, p.227 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | beta-Amyloid peptide 1-42 (A beta(1-42)) is generated from amyloid precursor protein (APP) and associated with neurodegeneration in Alzheimer's disease (AD). A beta(1-42) has been shown to be cytotoxic when incubated with cultured neurons. However, APP transgenic mice over-expressing A beta(1-42) do not show substantial loss of neurons, despite deficits in learning and memory. It is thus emerging that A beta(1-42)-induced memory deficits may involve subtler neuronal alternations leading to synaptic deficits, prior to frank neurodegeneration in AD brains. In this study, high content screen (HCS) microscopy, an advanced high-throughput cellular image processing and analysis technique, was utilized in establishing an in vitro model of A beta(1-42)-induced neurotoxicity utilizing rat neonatal primary cortical cells. Neurite outgrowth was found to be significantly reduced by A beta(1-42) (300 nM to 30 microM), but not by the scrambled control peptide control, in a time- and concentration-dependent manner. In contrast, no reduction in the total number of neurons was observed. The A beta(1-42)-induced reduction of neurite outgrowth was attenuated by the NMDA receptor antagonist memantine and the alpha 7 nicotinic acetylcholine receptor (nAChR) selective agonist PNU-282987. Interestingly, the alpha 7 nAChR antagonist methyllycaconitine also significantly prevented reduction in A beta(1-42)-induced neurite outgrowth. The observed neuroprotective effects could arise either from interference of A beta(1-42) interactions with alpha 7 nAChRs or by modification of receptor-mediated signaling pathways. Our studies demonstrate that reduction of neurite outgrowth may serve as a model representing A beta(1-42)-mediated neuritic and synaptic toxicity, which, in combination of HCS, provides a high-throughput cell-based assay that can be used to evaluate compounds with neuroprotective properties in neurons. |
---|---|
ISSN: | 0006-8993 |