Performance-Oriented Antiwindup for a Class of Linear Control Systems With Augmented Neural Network Controller

This paper presents a conditioning scheme for a linear control system which is enhanced by a neural network (NN) controller and subjected to a control signal amplitude limit. The NN controller improves the performance of the linear control system by directly estimating an actuator-matched, unmodeled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2007-03, Vol.18 (2), p.449-465
Hauptverfasser: Herrmann, G., Turner, M.C., Postlethwaite, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a conditioning scheme for a linear control system which is enhanced by a neural network (NN) controller and subjected to a control signal amplitude limit. The NN controller improves the performance of the linear control system by directly estimating an actuator-matched, unmodeled, nonlinear disturbance, in closed-loop, and compensating for it. As disturbances are generally known to be bounded, the nominal NN-control element is modified to keep its output below the disturbance bound. The linear control element is conditioned by an antiwindup (AW) compensator which ensures performance close to the nominal controller and swift recovery from saturation. For this, the AW compensator proposed is of low order, designed using convex linear matrix inequalities (LMIs) optimization
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2006.885037