MILES: Multiple-Instance Learning via Embedded Instance Selection

Multiple-instance problems arise from the situations where training class labels are attached to sets of samples (named bags), instead of individual samples within each bag (called instances). Most previous multiple-instance learning (MIL) algorithms are developed based on the assumption that a bag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2006-12, Vol.28 (12), p.1931-1947
Hauptverfasser: Yixin Chen, Jinbo Bi, Wang, J.Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1947
container_issue 12
container_start_page 1931
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 28
creator Yixin Chen
Jinbo Bi
Wang, J.Z.
description Multiple-instance problems arise from the situations where training class labels are attached to sets of samples (named bags), instead of individual samples within each bag (called instances). Most previous multiple-instance learning (MIL) algorithms are developed based on the assumption that a bag is positive if and only if at least one of its instances is positive. Although the assumption works well in a drug activity prediction problem, it is rather restrictive for other applications, especially those in the computer vision area. We propose a learning method, MILES (multiple-instance learning via embedded instance selection), which converts the multiple-instance learning problem to a standard supervised learning problem that does not impose the assumption relating instance labels to bag labels. MILES maps each bag into a feature space defined by the instances in the training bags via an instance similarity measure. This feature mapping often provides a large number of redundant or irrelevant features. Hence, 1-norm SVM is applied to select important features as well as construct classifiers simultaneously. We have performed extensive experiments. In comparison with other methods, MILES demonstrates competitive classification accuracy, high computation efficiency, and robustness to labeling uncertainty
doi_str_mv 10.1109/TPAMI.2006.248
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_17108368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1717454</ieee_id><sourcerecordid>896193362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-fd8b2c733ca5fb7adf58cd111a213cb56ac0cfea9f2eb82ab6cc543076af44c23</originalsourceid><addsrcrecordid>eNp90c9LwzAUB_Agips_rl4EKYJ66sxL2jT1NmTqYKKweQ5p-iIdXTubVvC_N3VDxYOnHN7nvfDel5AToCMAml4vnseP0xGjVIxYJHfIEFKehjzm6S4ZUhAslJLJATlwbkkpRDHl-2QACVDJhRwS3z2bzG-Cx65si3WJ4bRyra4MBjPUTVVUr8F7oYPJKsM8xzz4Ls-xRNMWdXVE9qwuHR5v30PycjdZ3D6Es6f76e14FpqIsja0ucyYSTg3OrZZonMbS5MDgGbATRYLbaixqFPLMJNMZ8KYOOI0EdpGkWH8kFxt5q6b-q1D16pV4QyWpa6w7pySqfC7c9HLy3-lkBBz4D08_wOXdddUfgslRZwASKAejTbINLVzDVq1boqVbj4UUNVnoL4yUH0GymfgG862U7tshfkP3x7dg4st0M7o0jb-oIX7cZL5ryPh3enGFYj4e0wS-ct8AruyliY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>865711810</pqid></control><display><type>article</type><title>MILES: Multiple-Instance Learning via Embedded Instance Selection</title><source>IEEE Electronic Library Online</source><creator>Yixin Chen ; Jinbo Bi ; Wang, J.Z.</creator><creatorcontrib>Yixin Chen ; Jinbo Bi ; Wang, J.Z.</creatorcontrib><description>Multiple-instance problems arise from the situations where training class labels are attached to sets of samples (named bags), instead of individual samples within each bag (called instances). Most previous multiple-instance learning (MIL) algorithms are developed based on the assumption that a bag is positive if and only if at least one of its instances is positive. Although the assumption works well in a drug activity prediction problem, it is rather restrictive for other applications, especially those in the computer vision area. We propose a learning method, MILES (multiple-instance learning via embedded instance selection), which converts the multiple-instance learning problem to a standard supervised learning problem that does not impose the assumption relating instance labels to bag labels. MILES maps each bag into a feature space defined by the instances in the training bags via an instance similarity measure. This feature mapping often provides a large number of redundant or irrelevant features. Hence, 1-norm SVM is applied to select important features as well as construct classifiers simultaneously. We have performed extensive experiments. In comparison with other methods, MILES demonstrates competitive classification accuracy, high computation efficiency, and robustness to labeling uncertainty</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2006.248</identifier><identifier>PMID: 17108368</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>1-norm support vector machine ; Algorithms ; Application software ; Applied sciences ; Artificial Intelligence ; Bags ; Computer science; control theory; systems ; Computer vision ; drug activity prediction ; Drugs ; Exact sciences and technology ; feature subset selection ; image categorization ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Information Storage and Retrieval - methods ; Intelligence ; Labeling ; Labels ; Learning ; Learning systems ; Multiple-instance learning ; object recognition ; Pattern analysis ; Pattern recognition. Digital image processing. Computational geometry ; Reproducibility of Results ; Robustness ; Sensitivity and Specificity ; Similarity ; Studies ; Supervised learning ; Support vector machine classification ; Support vector machines ; Training ; Uncertainty</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2006-12, Vol.28 (12), p.1931-1947</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-fd8b2c733ca5fb7adf58cd111a213cb56ac0cfea9f2eb82ab6cc543076af44c23</citedby><cites>FETCH-LOGICAL-c402t-fd8b2c733ca5fb7adf58cd111a213cb56ac0cfea9f2eb82ab6cc543076af44c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1717454$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1717454$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18271146$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17108368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yixin Chen</creatorcontrib><creatorcontrib>Jinbo Bi</creatorcontrib><creatorcontrib>Wang, J.Z.</creatorcontrib><title>MILES: Multiple-Instance Learning via Embedded Instance Selection</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Multiple-instance problems arise from the situations where training class labels are attached to sets of samples (named bags), instead of individual samples within each bag (called instances). Most previous multiple-instance learning (MIL) algorithms are developed based on the assumption that a bag is positive if and only if at least one of its instances is positive. Although the assumption works well in a drug activity prediction problem, it is rather restrictive for other applications, especially those in the computer vision area. We propose a learning method, MILES (multiple-instance learning via embedded instance selection), which converts the multiple-instance learning problem to a standard supervised learning problem that does not impose the assumption relating instance labels to bag labels. MILES maps each bag into a feature space defined by the instances in the training bags via an instance similarity measure. This feature mapping often provides a large number of redundant or irrelevant features. Hence, 1-norm SVM is applied to select important features as well as construct classifiers simultaneously. We have performed extensive experiments. In comparison with other methods, MILES demonstrates competitive classification accuracy, high computation efficiency, and robustness to labeling uncertainty</description><subject>1-norm support vector machine</subject><subject>Algorithms</subject><subject>Application software</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Bags</subject><subject>Computer science; control theory; systems</subject><subject>Computer vision</subject><subject>drug activity prediction</subject><subject>Drugs</subject><subject>Exact sciences and technology</subject><subject>feature subset selection</subject><subject>image categorization</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Information Storage and Retrieval - methods</subject><subject>Intelligence</subject><subject>Labeling</subject><subject>Labels</subject><subject>Learning</subject><subject>Learning systems</subject><subject>Multiple-instance learning</subject><subject>object recognition</subject><subject>Pattern analysis</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Reproducibility of Results</subject><subject>Robustness</subject><subject>Sensitivity and Specificity</subject><subject>Similarity</subject><subject>Studies</subject><subject>Supervised learning</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Training</subject><subject>Uncertainty</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNp90c9LwzAUB_Agips_rl4EKYJ66sxL2jT1NmTqYKKweQ5p-iIdXTubVvC_N3VDxYOnHN7nvfDel5AToCMAml4vnseP0xGjVIxYJHfIEFKehjzm6S4ZUhAslJLJATlwbkkpRDHl-2QACVDJhRwS3z2bzG-Cx65si3WJ4bRyra4MBjPUTVVUr8F7oYPJKsM8xzz4Ls-xRNMWdXVE9qwuHR5v30PycjdZ3D6Es6f76e14FpqIsja0ucyYSTg3OrZZonMbS5MDgGbATRYLbaixqFPLMJNMZ8KYOOI0EdpGkWH8kFxt5q6b-q1D16pV4QyWpa6w7pySqfC7c9HLy3-lkBBz4D08_wOXdddUfgslRZwASKAejTbINLVzDVq1boqVbj4UUNVnoL4yUH0GymfgG862U7tshfkP3x7dg4st0M7o0jb-oIX7cZL5ryPh3enGFYj4e0wS-ct8AruyliY</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Yixin Chen</creator><creator>Jinbo Bi</creator><creator>Wang, J.Z.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20061201</creationdate><title>MILES: Multiple-Instance Learning via Embedded Instance Selection</title><author>Yixin Chen ; Jinbo Bi ; Wang, J.Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-fd8b2c733ca5fb7adf58cd111a213cb56ac0cfea9f2eb82ab6cc543076af44c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>1-norm support vector machine</topic><topic>Algorithms</topic><topic>Application software</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Bags</topic><topic>Computer science; control theory; systems</topic><topic>Computer vision</topic><topic>drug activity prediction</topic><topic>Drugs</topic><topic>Exact sciences and technology</topic><topic>feature subset selection</topic><topic>image categorization</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Information Storage and Retrieval - methods</topic><topic>Intelligence</topic><topic>Labeling</topic><topic>Labels</topic><topic>Learning</topic><topic>Learning systems</topic><topic>Multiple-instance learning</topic><topic>object recognition</topic><topic>Pattern analysis</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Reproducibility of Results</topic><topic>Robustness</topic><topic>Sensitivity and Specificity</topic><topic>Similarity</topic><topic>Studies</topic><topic>Supervised learning</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Training</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yixin Chen</creatorcontrib><creatorcontrib>Jinbo Bi</creatorcontrib><creatorcontrib>Wang, J.Z.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yixin Chen</au><au>Jinbo Bi</au><au>Wang, J.Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MILES: Multiple-Instance Learning via Embedded Instance Selection</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>28</volume><issue>12</issue><spage>1931</spage><epage>1947</epage><pages>1931-1947</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Multiple-instance problems arise from the situations where training class labels are attached to sets of samples (named bags), instead of individual samples within each bag (called instances). Most previous multiple-instance learning (MIL) algorithms are developed based on the assumption that a bag is positive if and only if at least one of its instances is positive. Although the assumption works well in a drug activity prediction problem, it is rather restrictive for other applications, especially those in the computer vision area. We propose a learning method, MILES (multiple-instance learning via embedded instance selection), which converts the multiple-instance learning problem to a standard supervised learning problem that does not impose the assumption relating instance labels to bag labels. MILES maps each bag into a feature space defined by the instances in the training bags via an instance similarity measure. This feature mapping often provides a large number of redundant or irrelevant features. Hence, 1-norm SVM is applied to select important features as well as construct classifiers simultaneously. We have performed extensive experiments. In comparison with other methods, MILES demonstrates competitive classification accuracy, high computation efficiency, and robustness to labeling uncertainty</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>17108368</pmid><doi>10.1109/TPAMI.2006.248</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2006-12, Vol.28 (12), p.1931-1947
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_pubmed_primary_17108368
source IEEE Electronic Library Online
subjects 1-norm support vector machine
Algorithms
Application software
Applied sciences
Artificial Intelligence
Bags
Computer science
control theory
systems
Computer vision
drug activity prediction
Drugs
Exact sciences and technology
feature subset selection
image categorization
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Information Storage and Retrieval - methods
Intelligence
Labeling
Labels
Learning
Learning systems
Multiple-instance learning
object recognition
Pattern analysis
Pattern recognition. Digital image processing. Computational geometry
Reproducibility of Results
Robustness
Sensitivity and Specificity
Similarity
Studies
Supervised learning
Support vector machine classification
Support vector machines
Training
Uncertainty
title MILES: Multiple-Instance Learning via Embedded Instance Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MILES:%20Multiple-Instance%20Learning%20via%20Embedded%20Instance%20Selection&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Yixin%20Chen&rft.date=2006-12-01&rft.volume=28&rft.issue=12&rft.spage=1931&rft.epage=1947&rft.pages=1931-1947&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2006.248&rft_dat=%3Cproquest_RIE%3E896193362%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=865711810&rft_id=info:pmid/17108368&rft_ieee_id=1717454&rfr_iscdi=true