Running over Rough Terrain Reveals Limb Control for Intrinsic Stability

Legged animals routinely negotiate rough, unpredictable terrain with agility and stability that outmatches any human-built machine. Yet, we know surprisingly little about how animals accomplish this. Current knowledge is largely limited to studies of steady movement. These studies have revealed fund...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-10, Vol.103 (42), p.15681-15686
Hauptverfasser: Daley, Monica A., Biewener, Andrew A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15686
container_issue 42
container_start_page 15681
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Daley, Monica A.
Biewener, Andrew A.
description Legged animals routinely negotiate rough, unpredictable terrain with agility and stability that outmatches any human-built machine. Yet, we know surprisingly little about how animals accomplish this. Current knowledge is largely limited to studies of steady movement. These studies have revealed fundamental mechanisms used by terrestrial animals for steady locomotion. However, it is unclear whether these models provide an appropriate framework for the neuromuscular and mechanical strategies used to achieve dynamic stability over rough terrain. Perturbation experiments shed light on this issue, revealing the interplay between mechanics and neuromuscular control. We measured limb mechanics of helmeted guinea fowl (Numida meleagris) running over an unexpected drop in terrain, comparing their response to predictions of the mass-spring running model. Adjustment of limb contact angle explains 80% of the variation in stance-phase limb loading following the perturbation. Surprisingly, although limb stiffness varies dramatically, it does not influence the response. This result agrees with a mass-spring model, although it differs from previous findings on humans running over surfaces of varying compliance. However, guinea fowl sometimes deviate from mass-spring dynamics through posture-dependent work performance of the limb, leading to substantial energy absorption following the perturbation. This posture-dependent actuation allows the animal to absorb energy and maintain desired velocity on a sudden substrate drop. Thus, posture-dependent work performance of the limb provides inherent velocity control over rough terrain. These findings highlight how simple mechanical models extend to unsteady conditions, providing fundamental insights into neuromuscular control of movement and the design of dynamically stable legged robots and prosthetic devices.
doi_str_mv 10.1073/pnas.0601473103
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17032779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30050905</jstor_id><sourcerecordid>30050905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-208ff24a7160a1e507c1dc621d30ba776586bd21511b15f09398e97311f092eb3</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhS0EomnhzAlkcajEIe2MvbbXFyQUQakUCSmUs-XdeFNHGzvYuxH99zgkaoBLTx7J37yZN4-QNwhXCIpfb4PNVyABK8UR-DMyQdA4lZWG52QCwNS0rlh1Rs5zXgOAFjW8JGeogDOl9ITcLMYQfFjRuHOJLuK4uqd3LiXrA124nbN9pnO_aegshiHFnnYx0dtS-pB9S78PtvG9Hx5ekRddYd3r43tBfnz5fDf7Op1_u7mdfZpPW6HlMGVQdx2rrEIJFp0A1eKylQyXHBqrlBS1bJYMBWKDogPNde108YalZq7hF-TjQXc7Nhu3bF1ZxfZmm_zGpgcTrTf__gR_b1ZxZ1AyVtdYBC6PAin-HF0ezMbn1vW9DS6O2chaSw1cPAmi5hJYDQV8_x-4jmMK5QqGAfIyU-_HXh-gNsWck-seV0Yw-yjNPkpzirJ0vPvb6Yk_ZlcAegT2nSc5bipmUMg_Zj88gZhu7PvB_RoK-_bArvMQ0yPMAQRoEPw3Yvi7KQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201381391</pqid></control><display><type>article</type><title>Running over Rough Terrain Reveals Limb Control for Intrinsic Stability</title><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Daley, Monica A. ; Biewener, Andrew A.</creator><creatorcontrib>Daley, Monica A. ; Biewener, Andrew A.</creatorcontrib><description>Legged animals routinely negotiate rough, unpredictable terrain with agility and stability that outmatches any human-built machine. Yet, we know surprisingly little about how animals accomplish this. Current knowledge is largely limited to studies of steady movement. These studies have revealed fundamental mechanisms used by terrestrial animals for steady locomotion. However, it is unclear whether these models provide an appropriate framework for the neuromuscular and mechanical strategies used to achieve dynamic stability over rough terrain. Perturbation experiments shed light on this issue, revealing the interplay between mechanics and neuromuscular control. We measured limb mechanics of helmeted guinea fowl (Numida meleagris) running over an unexpected drop in terrain, comparing their response to predictions of the mass-spring running model. Adjustment of limb contact angle explains 80% of the variation in stance-phase limb loading following the perturbation. Surprisingly, although limb stiffness varies dramatically, it does not influence the response. This result agrees with a mass-spring model, although it differs from previous findings on humans running over surfaces of varying compliance. However, guinea fowl sometimes deviate from mass-spring dynamics through posture-dependent work performance of the limb, leading to substantial energy absorption following the perturbation. This posture-dependent actuation allows the animal to absorb energy and maintain desired velocity on a sudden substrate drop. Thus, posture-dependent work performance of the limb provides inherent velocity control over rough terrain. These findings highlight how simple mechanical models extend to unsteady conditions, providing fundamental insights into neuromuscular control of movement and the design of dynamically stable legged robots and prosthetic devices.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0601473103</identifier><identifier>PMID: 17032779</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Biomechanical Phenomena ; Energy ; Fracture mechanics ; Galliformes ; Hip ; Humans ; Joints ; Knees ; Legs ; Lower Extremity - anatomy &amp; histology ; Lower Extremity - physiology ; Modeling ; Movement ; Muscle, Skeletal - physiology ; Muscular system ; Nervous system ; Numida meleagris ; Parametric models ; Postural Balance - physiology ; Regression Analysis ; Running ; Stiffness ; Surface Properties ; Velocity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-10, Vol.103 (42), p.15681-15686</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 17, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-208ff24a7160a1e507c1dc621d30ba776586bd21511b15f09398e97311f092eb3</citedby><cites>FETCH-LOGICAL-c596t-208ff24a7160a1e507c1dc621d30ba776586bd21511b15f09398e97311f092eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/42.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30050905$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30050905$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17032779$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daley, Monica A.</creatorcontrib><creatorcontrib>Biewener, Andrew A.</creatorcontrib><title>Running over Rough Terrain Reveals Limb Control for Intrinsic Stability</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Legged animals routinely negotiate rough, unpredictable terrain with agility and stability that outmatches any human-built machine. Yet, we know surprisingly little about how animals accomplish this. Current knowledge is largely limited to studies of steady movement. These studies have revealed fundamental mechanisms used by terrestrial animals for steady locomotion. However, it is unclear whether these models provide an appropriate framework for the neuromuscular and mechanical strategies used to achieve dynamic stability over rough terrain. Perturbation experiments shed light on this issue, revealing the interplay between mechanics and neuromuscular control. We measured limb mechanics of helmeted guinea fowl (Numida meleagris) running over an unexpected drop in terrain, comparing their response to predictions of the mass-spring running model. Adjustment of limb contact angle explains 80% of the variation in stance-phase limb loading following the perturbation. Surprisingly, although limb stiffness varies dramatically, it does not influence the response. This result agrees with a mass-spring model, although it differs from previous findings on humans running over surfaces of varying compliance. However, guinea fowl sometimes deviate from mass-spring dynamics through posture-dependent work performance of the limb, leading to substantial energy absorption following the perturbation. This posture-dependent actuation allows the animal to absorb energy and maintain desired velocity on a sudden substrate drop. Thus, posture-dependent work performance of the limb provides inherent velocity control over rough terrain. These findings highlight how simple mechanical models extend to unsteady conditions, providing fundamental insights into neuromuscular control of movement and the design of dynamically stable legged robots and prosthetic devices.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biomechanical Phenomena</subject><subject>Energy</subject><subject>Fracture mechanics</subject><subject>Galliformes</subject><subject>Hip</subject><subject>Humans</subject><subject>Joints</subject><subject>Knees</subject><subject>Legs</subject><subject>Lower Extremity - anatomy &amp; histology</subject><subject>Lower Extremity - physiology</subject><subject>Modeling</subject><subject>Movement</subject><subject>Muscle, Skeletal - physiology</subject><subject>Muscular system</subject><subject>Nervous system</subject><subject>Numida meleagris</subject><subject>Parametric models</subject><subject>Postural Balance - physiology</subject><subject>Regression Analysis</subject><subject>Running</subject><subject>Stiffness</subject><subject>Surface Properties</subject><subject>Velocity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvEzEQhS0EomnhzAlkcajEIe2MvbbXFyQUQakUCSmUs-XdeFNHGzvYuxH99zgkaoBLTx7J37yZN4-QNwhXCIpfb4PNVyABK8UR-DMyQdA4lZWG52QCwNS0rlh1Rs5zXgOAFjW8JGeogDOl9ITcLMYQfFjRuHOJLuK4uqd3LiXrA124nbN9pnO_aegshiHFnnYx0dtS-pB9S78PtvG9Hx5ekRddYd3r43tBfnz5fDf7Op1_u7mdfZpPW6HlMGVQdx2rrEIJFp0A1eKylQyXHBqrlBS1bJYMBWKDogPNde108YalZq7hF-TjQXc7Nhu3bF1ZxfZmm_zGpgcTrTf__gR_b1ZxZ1AyVtdYBC6PAin-HF0ezMbn1vW9DS6O2chaSw1cPAmi5hJYDQV8_x-4jmMK5QqGAfIyU-_HXh-gNsWck-seV0Yw-yjNPkpzirJ0vPvb6Yk_ZlcAegT2nSc5bipmUMg_Zj88gZhu7PvB_RoK-_bArvMQ0yPMAQRoEPw3Yvi7KQ</recordid><startdate>20061017</startdate><enddate>20061017</enddate><creator>Daley, Monica A.</creator><creator>Biewener, Andrew A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061017</creationdate><title>Running over Rough Terrain Reveals Limb Control for Intrinsic Stability</title><author>Daley, Monica A. ; Biewener, Andrew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-208ff24a7160a1e507c1dc621d30ba776586bd21511b15f09398e97311f092eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biomechanical Phenomena</topic><topic>Energy</topic><topic>Fracture mechanics</topic><topic>Galliformes</topic><topic>Hip</topic><topic>Humans</topic><topic>Joints</topic><topic>Knees</topic><topic>Legs</topic><topic>Lower Extremity - anatomy &amp; histology</topic><topic>Lower Extremity - physiology</topic><topic>Modeling</topic><topic>Movement</topic><topic>Muscle, Skeletal - physiology</topic><topic>Muscular system</topic><topic>Nervous system</topic><topic>Numida meleagris</topic><topic>Parametric models</topic><topic>Postural Balance - physiology</topic><topic>Regression Analysis</topic><topic>Running</topic><topic>Stiffness</topic><topic>Surface Properties</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daley, Monica A.</creatorcontrib><creatorcontrib>Biewener, Andrew A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daley, Monica A.</au><au>Biewener, Andrew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Running over Rough Terrain Reveals Limb Control for Intrinsic Stability</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-10-17</date><risdate>2006</risdate><volume>103</volume><issue>42</issue><spage>15681</spage><epage>15686</epage><pages>15681-15686</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Legged animals routinely negotiate rough, unpredictable terrain with agility and stability that outmatches any human-built machine. Yet, we know surprisingly little about how animals accomplish this. Current knowledge is largely limited to studies of steady movement. These studies have revealed fundamental mechanisms used by terrestrial animals for steady locomotion. However, it is unclear whether these models provide an appropriate framework for the neuromuscular and mechanical strategies used to achieve dynamic stability over rough terrain. Perturbation experiments shed light on this issue, revealing the interplay between mechanics and neuromuscular control. We measured limb mechanics of helmeted guinea fowl (Numida meleagris) running over an unexpected drop in terrain, comparing their response to predictions of the mass-spring running model. Adjustment of limb contact angle explains 80% of the variation in stance-phase limb loading following the perturbation. Surprisingly, although limb stiffness varies dramatically, it does not influence the response. This result agrees with a mass-spring model, although it differs from previous findings on humans running over surfaces of varying compliance. However, guinea fowl sometimes deviate from mass-spring dynamics through posture-dependent work performance of the limb, leading to substantial energy absorption following the perturbation. This posture-dependent actuation allows the animal to absorb energy and maintain desired velocity on a sudden substrate drop. Thus, posture-dependent work performance of the limb provides inherent velocity control over rough terrain. These findings highlight how simple mechanical models extend to unsteady conditions, providing fundamental insights into neuromuscular control of movement and the design of dynamically stable legged robots and prosthetic devices.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17032779</pmid><doi>10.1073/pnas.0601473103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-10, Vol.103 (42), p.15681-15686
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_17032779
source Open Access: PubMed Central; MEDLINE; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Animals
Biological Sciences
Biomechanical Phenomena
Energy
Fracture mechanics
Galliformes
Hip
Humans
Joints
Knees
Legs
Lower Extremity - anatomy & histology
Lower Extremity - physiology
Modeling
Movement
Muscle, Skeletal - physiology
Muscular system
Nervous system
Numida meleagris
Parametric models
Postural Balance - physiology
Regression Analysis
Running
Stiffness
Surface Properties
Velocity
title Running over Rough Terrain Reveals Limb Control for Intrinsic Stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A57%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Running%20over%20Rough%20Terrain%20Reveals%20Limb%20Control%20for%20Intrinsic%20Stability&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Daley,%20Monica%20A.&rft.date=2006-10-17&rft.volume=103&rft.issue=42&rft.spage=15681&rft.epage=15686&rft.pages=15681-15686&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0601473103&rft_dat=%3Cjstor_pubme%3E30050905%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201381391&rft_id=info:pmid/17032779&rft_jstor_id=30050905&rfr_iscdi=true