Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells

Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, and Servicio de Farmacología Clínica e Instituto Universitario de Investigación Gerontológica y Metabólica, Hospital Universitario de la Princesa, Facultad de Medicina, Universidad Autónoma de Madrid; Unidad de Farmacología, Fac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological reviews 2006-10, Vol.86 (4), p.1093-1131
Hauptverfasser: Garcia, Antonio G, Garcia-De-Diego, Antonio M, Gandia, Luis, Borges, Ricardo, Garcia-Sancho, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1131
container_issue 4
container_start_page 1093
container_title Physiological reviews
container_volume 86
creator Garcia, Antonio G
Garcia-De-Diego, Antonio M
Gandia, Luis
Borges, Ricardo
Garcia-Sancho, Javier
description Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, and Servicio de Farmacología Clínica e Instituto Universitario de Investigación Gerontológica y Metabólica, Hospital Universitario de la Princesa, Facultad de Medicina, Universidad Autónoma de Madrid; Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna; and Instituto de Biología y Genética Molecular, Universidad de Valladolid y CSIC, Departamento de Fisiología, Facultad de Medicina, Valladolid, Spain At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca 2+ concentration ([Ca 2+ ] c ) depends on at least four efficient regulatory systems: 1 ) plasmalemmal calcium channels, 2 ) endoplasmic reticulum, 3 ) mitochondria, and 4 ) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels; in bovine and humans, P/Q channels predominate, whereas in felines and murine species, L-type channels predominate. The calcium channels in chromaffin cells are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca 2+ ] c . Chromaffin cells have been particularly useful in studying calcium channel current autoregulation by materials coreleased with catecholamines, such as ATP and opiates. Depending on the preparation (cultured cells, adrenal slices) and the stimulation pattern (action potentials, depolarizing pulses, high K + , acetylcholine), the role of each calcium channel in controlling catecholamine release can change drastically. Targeted aequorin and confocal microscopy shows that Ca 2+ entry through calcium channels can refill the endoplasmic reticulum (ER) to nearly millimolar concentrations, and causes the release of Ca 2+ (CICR). Depending on its degree of filling, the ER may act as a sink or source of Ca 2+ that modulates catecholamine release. Targeted aequorins with different Ca 2+ affinities show that mitochondria undergo surprisingly rapid millimolar Ca 2+ transients, upon stimulation of chromaffin cells with ACh, high K + , or caffeine. Physiological stimuli generate [Ca 2+ ] c microdomains in which the local subplasmalemmal [Ca 2+ ] c rises abruptly from 0.1 to 50 µM, triggering CICR, mitochondrial Ca 2+ uptake, and exocytosis at nearby secretory active sites. The fact that protonophores abolish mitochondrial Ca 2+ uptake, and increase catecholamine release three- to fivefold, support the
doi_str_mv 10.1152/physrev.00039.2005
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmed_primary_17015485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A153707347</galeid><sourcerecordid>A153707347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-3dfe03d2e54ceb9ac1e3767a0689976c16881edaeeb3ce448d331836d936cfd33</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhD3BAEQdOZGvHsWNLXFZRC5UqcWg5W157knXlxIudlO6_x9vdglQVIR8sz3zvzVgPofcELwlh1dl2s0sR7pYYYyqXFcbsBVrkRlWSiuCXaJHrpJSU0hP0JqXbzDHG2Wt0QhpMWC3YAn1ptTduHopr14_au7Ev9GiL8_tgdlNILhVuLFY2Qm4W7SaGQXddLrXgfXqLXnXaJ3h3vE_Rj4vzm_ZbefX962W7uioNE2Iqqe0AU1sBqw2spTYEaMMbjbmQsuGGcCEIWA2wpgbqWlhKiaDcSspNlx-n6NPBdxvDzxnSpAaXTN5AjxDmpLIPEYTX_wWJpIzLimXw4xPwNswx_zGpKhsJweXerTxAvfag3NiFKWrTwwhR-zBC53J5RRhtcEPrJvPLZ_h8LAzOPCuoDgITQ8pRdmob3aDjThGs9hGrY8TqIWK1jziLPhxXn9cD2L-SY6YZEAdg4_rNLxfhwcUFH_qdupi9v4H76dFZcFXnaZKqre2y9PO_pY-7_JHQ3-Gfxm0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216488694</pqid></control><display><type>article</type><title>Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Garcia, Antonio G ; Garcia-De-Diego, Antonio M ; Gandia, Luis ; Borges, Ricardo ; Garcia-Sancho, Javier</creator><creatorcontrib>Garcia, Antonio G ; Garcia-De-Diego, Antonio M ; Gandia, Luis ; Borges, Ricardo ; Garcia-Sancho, Javier</creatorcontrib><description>Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, and Servicio de Farmacología Clínica e Instituto Universitario de Investigación Gerontológica y Metabólica, Hospital Universitario de la Princesa, Facultad de Medicina, Universidad Autónoma de Madrid; Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna; and Instituto de Biología y Genética Molecular, Universidad de Valladolid y CSIC, Departamento de Fisiología, Facultad de Medicina, Valladolid, Spain At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca 2+ concentration ([Ca 2+ ] c ) depends on at least four efficient regulatory systems: 1 ) plasmalemmal calcium channels, 2 ) endoplasmic reticulum, 3 ) mitochondria, and 4 ) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels; in bovine and humans, P/Q channels predominate, whereas in felines and murine species, L-type channels predominate. The calcium channels in chromaffin cells are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca 2+ ] c . Chromaffin cells have been particularly useful in studying calcium channel current autoregulation by materials coreleased with catecholamines, such as ATP and opiates. Depending on the preparation (cultured cells, adrenal slices) and the stimulation pattern (action potentials, depolarizing pulses, high K + , acetylcholine), the role of each calcium channel in controlling catecholamine release can change drastically. Targeted aequorin and confocal microscopy shows that Ca 2+ entry through calcium channels can refill the endoplasmic reticulum (ER) to nearly millimolar concentrations, and causes the release of Ca 2+ (CICR). Depending on its degree of filling, the ER may act as a sink or source of Ca 2+ that modulates catecholamine release. Targeted aequorins with different Ca 2+ affinities show that mitochondria undergo surprisingly rapid millimolar Ca 2+ transients, upon stimulation of chromaffin cells with ACh, high K + , or caffeine. Physiological stimuli generate [Ca 2+ ] c microdomains in which the local subplasmalemmal [Ca 2+ ] c rises abruptly from 0.1 to 50 µM, triggering CICR, mitochondrial Ca 2+ uptake, and exocytosis at nearby secretory active sites. The fact that protonophores abolish mitochondrial Ca 2+ uptake, and increase catecholamine release three- to fivefold, support the earlier observation. This increase is probably due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; this transport might be controlled by Ca 2+ redistribution to the cytoskeleton, through CICR, and/or mitochondrial Ca 2+ release. We propose that chromaffin cells have developed functional triads that are formed by calcium channels, the ER, and the mitochondria and locally control the [Ca 2+ ] c that regulate the early and late steps of exocytosis.</description><identifier>ISSN: 0031-9333</identifier><identifier>EISSN: 1522-1210</identifier><identifier>DOI: 10.1152/physrev.00039.2005</identifier><identifier>PMID: 17015485</identifier><identifier>CODEN: PHREA7</identifier><language>eng</language><publisher>United States: Am Physiological Soc</publisher><subject>Adrenal Glands - cytology ; Adrenal Glands - physiology ; Animals ; Biodiversity ; Calcium ; Calcium channels ; Calcium Signaling - physiology ; Cellular biology ; Chromaffin Cells - physiology ; Exocytosis ; Exocytosis - physiology ; Humans ; Microscopy ; Mitochondrial DNA ; Studies</subject><ispartof>Physiological reviews, 2006-10, Vol.86 (4), p.1093-1131</ispartof><rights>COPYRIGHT 2006 American Physiological Society</rights><rights>Copyright American Physiological Society Oct 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-3dfe03d2e54ceb9ac1e3767a0689976c16881edaeeb3ce448d331836d936cfd33</citedby><cites>FETCH-LOGICAL-c588t-3dfe03d2e54ceb9ac1e3767a0689976c16881edaeeb3ce448d331836d936cfd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17015485$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Antonio G</creatorcontrib><creatorcontrib>Garcia-De-Diego, Antonio M</creatorcontrib><creatorcontrib>Gandia, Luis</creatorcontrib><creatorcontrib>Borges, Ricardo</creatorcontrib><creatorcontrib>Garcia-Sancho, Javier</creatorcontrib><title>Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells</title><title>Physiological reviews</title><addtitle>Physiol Rev</addtitle><description>Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, and Servicio de Farmacología Clínica e Instituto Universitario de Investigación Gerontológica y Metabólica, Hospital Universitario de la Princesa, Facultad de Medicina, Universidad Autónoma de Madrid; Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna; and Instituto de Biología y Genética Molecular, Universidad de Valladolid y CSIC, Departamento de Fisiología, Facultad de Medicina, Valladolid, Spain At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca 2+ concentration ([Ca 2+ ] c ) depends on at least four efficient regulatory systems: 1 ) plasmalemmal calcium channels, 2 ) endoplasmic reticulum, 3 ) mitochondria, and 4 ) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels; in bovine and humans, P/Q channels predominate, whereas in felines and murine species, L-type channels predominate. The calcium channels in chromaffin cells are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca 2+ ] c . Chromaffin cells have been particularly useful in studying calcium channel current autoregulation by materials coreleased with catecholamines, such as ATP and opiates. Depending on the preparation (cultured cells, adrenal slices) and the stimulation pattern (action potentials, depolarizing pulses, high K + , acetylcholine), the role of each calcium channel in controlling catecholamine release can change drastically. Targeted aequorin and confocal microscopy shows that Ca 2+ entry through calcium channels can refill the endoplasmic reticulum (ER) to nearly millimolar concentrations, and causes the release of Ca 2+ (CICR). Depending on its degree of filling, the ER may act as a sink or source of Ca 2+ that modulates catecholamine release. Targeted aequorins with different Ca 2+ affinities show that mitochondria undergo surprisingly rapid millimolar Ca 2+ transients, upon stimulation of chromaffin cells with ACh, high K + , or caffeine. Physiological stimuli generate [Ca 2+ ] c microdomains in which the local subplasmalemmal [Ca 2+ ] c rises abruptly from 0.1 to 50 µM, triggering CICR, mitochondrial Ca 2+ uptake, and exocytosis at nearby secretory active sites. The fact that protonophores abolish mitochondrial Ca 2+ uptake, and increase catecholamine release three- to fivefold, support the earlier observation. This increase is probably due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; this transport might be controlled by Ca 2+ redistribution to the cytoskeleton, through CICR, and/or mitochondrial Ca 2+ release. We propose that chromaffin cells have developed functional triads that are formed by calcium channels, the ER, and the mitochondria and locally control the [Ca 2+ ] c that regulate the early and late steps of exocytosis.</description><subject>Adrenal Glands - cytology</subject><subject>Adrenal Glands - physiology</subject><subject>Animals</subject><subject>Biodiversity</subject><subject>Calcium</subject><subject>Calcium channels</subject><subject>Calcium Signaling - physiology</subject><subject>Cellular biology</subject><subject>Chromaffin Cells - physiology</subject><subject>Exocytosis</subject><subject>Exocytosis - physiology</subject><subject>Humans</subject><subject>Microscopy</subject><subject>Mitochondrial DNA</subject><subject>Studies</subject><issn>0031-9333</issn><issn>1522-1210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFv1DAQhS0EokvhD3BAEQdOZGvHsWNLXFZRC5UqcWg5W157knXlxIudlO6_x9vdglQVIR8sz3zvzVgPofcELwlh1dl2s0sR7pYYYyqXFcbsBVrkRlWSiuCXaJHrpJSU0hP0JqXbzDHG2Wt0QhpMWC3YAn1ptTduHopr14_au7Ev9GiL8_tgdlNILhVuLFY2Qm4W7SaGQXddLrXgfXqLXnXaJ3h3vE_Rj4vzm_ZbefX962W7uioNE2Iqqe0AU1sBqw2spTYEaMMbjbmQsuGGcCEIWA2wpgbqWlhKiaDcSspNlx-n6NPBdxvDzxnSpAaXTN5AjxDmpLIPEYTX_wWJpIzLimXw4xPwNswx_zGpKhsJweXerTxAvfag3NiFKWrTwwhR-zBC53J5RRhtcEPrJvPLZ_h8LAzOPCuoDgITQ8pRdmob3aDjThGs9hGrY8TqIWK1jziLPhxXn9cD2L-SY6YZEAdg4_rNLxfhwcUFH_qdupi9v4H76dFZcFXnaZKqre2y9PO_pY-7_JHQ3-Gfxm0</recordid><startdate>20061001</startdate><enddate>20061001</enddate><creator>Garcia, Antonio G</creator><creator>Garcia-De-Diego, Antonio M</creator><creator>Gandia, Luis</creator><creator>Borges, Ricardo</creator><creator>Garcia-Sancho, Javier</creator><general>Am Physiological Soc</general><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope></search><sort><creationdate>20061001</creationdate><title>Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells</title><author>Garcia, Antonio G ; Garcia-De-Diego, Antonio M ; Gandia, Luis ; Borges, Ricardo ; Garcia-Sancho, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-3dfe03d2e54ceb9ac1e3767a0689976c16881edaeeb3ce448d331836d936cfd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adrenal Glands - cytology</topic><topic>Adrenal Glands - physiology</topic><topic>Animals</topic><topic>Biodiversity</topic><topic>Calcium</topic><topic>Calcium channels</topic><topic>Calcium Signaling - physiology</topic><topic>Cellular biology</topic><topic>Chromaffin Cells - physiology</topic><topic>Exocytosis</topic><topic>Exocytosis - physiology</topic><topic>Humans</topic><topic>Microscopy</topic><topic>Mitochondrial DNA</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Antonio G</creatorcontrib><creatorcontrib>Garcia-De-Diego, Antonio M</creatorcontrib><creatorcontrib>Gandia, Luis</creatorcontrib><creatorcontrib>Borges, Ricardo</creatorcontrib><creatorcontrib>Garcia-Sancho, Javier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Physiological reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Antonio G</au><au>Garcia-De-Diego, Antonio M</au><au>Gandia, Luis</au><au>Borges, Ricardo</au><au>Garcia-Sancho, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells</atitle><jtitle>Physiological reviews</jtitle><addtitle>Physiol Rev</addtitle><date>2006-10-01</date><risdate>2006</risdate><volume>86</volume><issue>4</issue><spage>1093</spage><epage>1131</epage><pages>1093-1131</pages><issn>0031-9333</issn><eissn>1522-1210</eissn><coden>PHREA7</coden><abstract>Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, and Servicio de Farmacología Clínica e Instituto Universitario de Investigación Gerontológica y Metabólica, Hospital Universitario de la Princesa, Facultad de Medicina, Universidad Autónoma de Madrid; Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna; and Instituto de Biología y Genética Molecular, Universidad de Valladolid y CSIC, Departamento de Fisiología, Facultad de Medicina, Valladolid, Spain At a given cytosolic domain of a chromaffin cell, the rate and amplitude of the Ca 2+ concentration ([Ca 2+ ] c ) depends on at least four efficient regulatory systems: 1 ) plasmalemmal calcium channels, 2 ) endoplasmic reticulum, 3 ) mitochondria, and 4 ) chromaffin vesicles. Different mammalian species express different levels of the L, N, P/Q, and R subtypes of high-voltage-activated calcium channels; in bovine and humans, P/Q channels predominate, whereas in felines and murine species, L-type channels predominate. The calcium channels in chromaffin cells are regulated by G proteins coupled to purinergic and opiate receptors, as well as by voltage and the local changes of [Ca 2+ ] c . Chromaffin cells have been particularly useful in studying calcium channel current autoregulation by materials coreleased with catecholamines, such as ATP and opiates. Depending on the preparation (cultured cells, adrenal slices) and the stimulation pattern (action potentials, depolarizing pulses, high K + , acetylcholine), the role of each calcium channel in controlling catecholamine release can change drastically. Targeted aequorin and confocal microscopy shows that Ca 2+ entry through calcium channels can refill the endoplasmic reticulum (ER) to nearly millimolar concentrations, and causes the release of Ca 2+ (CICR). Depending on its degree of filling, the ER may act as a sink or source of Ca 2+ that modulates catecholamine release. Targeted aequorins with different Ca 2+ affinities show that mitochondria undergo surprisingly rapid millimolar Ca 2+ transients, upon stimulation of chromaffin cells with ACh, high K + , or caffeine. Physiological stimuli generate [Ca 2+ ] c microdomains in which the local subplasmalemmal [Ca 2+ ] c rises abruptly from 0.1 to 50 µM, triggering CICR, mitochondrial Ca 2+ uptake, and exocytosis at nearby secretory active sites. The fact that protonophores abolish mitochondrial Ca 2+ uptake, and increase catecholamine release three- to fivefold, support the earlier observation. This increase is probably due to acceleration of vesicle transport from a reserve pool to a ready-release vesicle pool; this transport might be controlled by Ca 2+ redistribution to the cytoskeleton, through CICR, and/or mitochondrial Ca 2+ release. We propose that chromaffin cells have developed functional triads that are formed by calcium channels, the ER, and the mitochondria and locally control the [Ca 2+ ] c that regulate the early and late steps of exocytosis.</abstract><cop>United States</cop><pub>Am Physiological Soc</pub><pmid>17015485</pmid><doi>10.1152/physrev.00039.2005</doi><tpages>39</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9333
ispartof Physiological reviews, 2006-10, Vol.86 (4), p.1093-1131
issn 0031-9333
1522-1210
language eng
recordid cdi_pubmed_primary_17015485
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Adrenal Glands - cytology
Adrenal Glands - physiology
Animals
Biodiversity
Calcium
Calcium channels
Calcium Signaling - physiology
Cellular biology
Chromaffin Cells - physiology
Exocytosis
Exocytosis - physiology
Humans
Microscopy
Mitochondrial DNA
Studies
title Calcium Signaling and Exocytosis in Adrenal Chromaffin Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A17%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium%20Signaling%20and%20Exocytosis%20in%20Adrenal%20Chromaffin%20Cells&rft.jtitle=Physiological%20reviews&rft.au=Garcia,%20Antonio%20G&rft.date=2006-10-01&rft.volume=86&rft.issue=4&rft.spage=1093&rft.epage=1131&rft.pages=1093-1131&rft.issn=0031-9333&rft.eissn=1522-1210&rft.coden=PHREA7&rft_id=info:doi/10.1152/physrev.00039.2005&rft_dat=%3Cgale_pubme%3EA153707347%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216488694&rft_id=info:pmid/17015485&rft_galeid=A153707347&rfr_iscdi=true