Detachment of Affinity-Captured Bioparticles by Elastic Deformation of a Macroporous Hydrogel

Adsorption of bioparticles to affinity surfaces involves polyvalent interactions, complicating greatly the recovery of the adsorbed material. A unique system for the efficient binding and release of different cells and particles is described. Affinity-bound bioparticles and synthetic particles are d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-01, Vol.103 (4), p.849-854
Hauptverfasser: Dainiak, Maria B., Kumar, Ashok, Galaev, Igor Yu, Mattiasson, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue 4
container_start_page 849
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Dainiak, Maria B.
Kumar, Ashok
Galaev, Igor Yu
Mattiasson, Bo
description Adsorption of bioparticles to affinity surfaces involves polyvalent interactions, complicating greatly the recovery of the adsorbed material. A unique system for the efficient binding and release of different cells and particles is described. Affinity-bound bioparticles and synthetic particles are detached from the macroporous hydrogel matrix, a so-called cryogel, when the cryogel undergoes elastic deformation. The particle detachment upon elastic deformation is believed to be due to breaking of many of the multipoint attachments between the particles and the affinity matrix and the change in the distance between affinity ligands when the matrix is deformed. However, no release of affinity-bound protein occurred upon elastic deformation. The phenomenon of particle detachment upon elastic deformation is believed to be of a generic nature, because it was demonstrated for a variety of bioparticles of different sizes and for synthetic particles, for different ligandreceptor pairs (IgG-protein A, sugar-ConA, metal ion-chelating ligand), and when the deformation was caused by either external forces (mechanical deformation) or internal forces (the shrinkage of thermosensitive, macroporous hydrogel upon an increase in temperature). The elasticity of cryogel monoliths ensures high recovery of captured cells under mild conditions, with highly retained viability. This property, along with their continuous porous structure makes cryogel monoliths very attractive for applications in affinity cell separation.
doi_str_mv 10.1073/pnas.0508432103
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16418282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30049093</jstor_id><sourcerecordid>30049093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-bbe6e2796399e724b12af73dea59b146a242f88543c3f9080ead172d0753faf03</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi0EotvCmRMo4tBb2vFHYvuC1G4LRVrEBY7IcpJxm1U2DrYD7L_Hq1116YWDZVnzzGNrXhPyhsIFBckvp9HGC6hACc4o8GdkQUHTshYanpMFAJOlEkyckNMY1wCgKwUvyQmtBVVMsQX5cYPJtg8bHFPhXXHlXD_2aVsu7ZTmgF1x3fvJhtS3A8ai2Ra3g435VNyg82FjU-_HXaMtvtg2-MkHP8fibtsFf4_DK_LC2SHi68N-Rr5_vP22vCtXXz99Xl6tyraqVCqbBmtkUtdca5RMNJRZJ3mHttINFbVlgjmlKsFb7jQoQNtRyTqQFXfWAT8jq703_sZpbswU-o0NW-Ntb4Z5yqvJy0Q0zPGGVsgM1CiNaGVtdKW56SRXUGWfBp51H_a67Npg1-bhBDs8sT6tjP2Dufe_DOVCar17z_uDIPifM8Zk1n4OYx6BYUC5ziHVGbrcQ3luMQZ0jxdQMLt0zS5dc0w3d7z7911H_hBnBs4PwK7zqONGGCW0cfMwJPyTMvj2f-Cxvo7Jh0eAA-SfpTn_C2-6wYs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201391096</pqid></control><display><type>article</type><title>Detachment of Affinity-Captured Bioparticles by Elastic Deformation of a Macroporous Hydrogel</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Dainiak, Maria B. ; Kumar, Ashok ; Galaev, Igor Yu ; Mattiasson, Bo</creator><creatorcontrib>Dainiak, Maria B. ; Kumar, Ashok ; Galaev, Igor Yu ; Mattiasson, Bo</creatorcontrib><description>Adsorption of bioparticles to affinity surfaces involves polyvalent interactions, complicating greatly the recovery of the adsorbed material. A unique system for the efficient binding and release of different cells and particles is described. Affinity-bound bioparticles and synthetic particles are detached from the macroporous hydrogel matrix, a so-called cryogel, when the cryogel undergoes elastic deformation. The particle detachment upon elastic deformation is believed to be due to breaking of many of the multipoint attachments between the particles and the affinity matrix and the change in the distance between affinity ligands when the matrix is deformed. However, no release of affinity-bound protein occurred upon elastic deformation. The phenomenon of particle detachment upon elastic deformation is believed to be of a generic nature, because it was demonstrated for a variety of bioparticles of different sizes and for synthetic particles, for different ligandreceptor pairs (IgG-protein A, sugar-ConA, metal ion-chelating ligand), and when the deformation was caused by either external forces (mechanical deformation) or internal forces (the shrinkage of thermosensitive, macroporous hydrogel upon an increase in temperature). The elasticity of cryogel monoliths ensures high recovery of captured cells under mild conditions, with highly retained viability. This property, along with their continuous porous structure makes cryogel monoliths very attractive for applications in affinity cell separation.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0508432103</identifier><identifier>PMID: 16418282</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adsorbents ; Adsorption ; affinity cryogel monoliths ; Animals ; Antigens, CD34 - biosynthesis ; Binding sites ; Biological Sciences ; Blood Proteins - chemistry ; Cell Line, Tumor ; cell release ; cell separation ; Cellular biology ; Chelating Agents - pharmacology ; Chromatography, Affinity ; Concanavalin A - chemistry ; Cryogels ; Dose-Response Relationship, Drug ; Edetic Acid - pharmacology ; Elastic tissue ; Elasticity ; Elution ; Engineering and Technology ; Escherichia coli - metabolism ; Fibronectins - chemistry ; Gels ; Hot Temperature ; Humans ; Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry ; Hydrogels - chemistry ; Imidazoles ; Immunoglobulin G - chemistry ; Inclusion bodies ; Industrial Biotechnology ; Industriell bioteknik ; Ions ; Ligands ; Microscopy, Electron, Scanning ; Molecules ; polyvalent interactions ; Porous materials ; Protein Binding ; Recombinant Proteins - chemistry ; Sorption ; Staphylococcal Protein A ; Teknik ; thermosensitive hydrogels ; Viability ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-01, Vol.103 (4), p.849-854</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 24, 2006</rights><rights>Copyright © 2006, The National Academy of Sciences 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-bbe6e2796399e724b12af73dea59b146a242f88543c3f9080ead172d0753faf03</citedby><cites>FETCH-LOGICAL-c558t-bbe6e2796399e724b12af73dea59b146a242f88543c3f9080ead172d0753faf03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30049093$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30049093$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16418282$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/418340$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Dainiak, Maria B.</creatorcontrib><creatorcontrib>Kumar, Ashok</creatorcontrib><creatorcontrib>Galaev, Igor Yu</creatorcontrib><creatorcontrib>Mattiasson, Bo</creatorcontrib><title>Detachment of Affinity-Captured Bioparticles by Elastic Deformation of a Macroporous Hydrogel</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Adsorption of bioparticles to affinity surfaces involves polyvalent interactions, complicating greatly the recovery of the adsorbed material. A unique system for the efficient binding and release of different cells and particles is described. Affinity-bound bioparticles and synthetic particles are detached from the macroporous hydrogel matrix, a so-called cryogel, when the cryogel undergoes elastic deformation. The particle detachment upon elastic deformation is believed to be due to breaking of many of the multipoint attachments between the particles and the affinity matrix and the change in the distance between affinity ligands when the matrix is deformed. However, no release of affinity-bound protein occurred upon elastic deformation. The phenomenon of particle detachment upon elastic deformation is believed to be of a generic nature, because it was demonstrated for a variety of bioparticles of different sizes and for synthetic particles, for different ligandreceptor pairs (IgG-protein A, sugar-ConA, metal ion-chelating ligand), and when the deformation was caused by either external forces (mechanical deformation) or internal forces (the shrinkage of thermosensitive, macroporous hydrogel upon an increase in temperature). The elasticity of cryogel monoliths ensures high recovery of captured cells under mild conditions, with highly retained viability. This property, along with their continuous porous structure makes cryogel monoliths very attractive for applications in affinity cell separation.</description><subject>Adsorbents</subject><subject>Adsorption</subject><subject>affinity cryogel monoliths</subject><subject>Animals</subject><subject>Antigens, CD34 - biosynthesis</subject><subject>Binding sites</subject><subject>Biological Sciences</subject><subject>Blood Proteins - chemistry</subject><subject>Cell Line, Tumor</subject><subject>cell release</subject><subject>cell separation</subject><subject>Cellular biology</subject><subject>Chelating Agents - pharmacology</subject><subject>Chromatography, Affinity</subject><subject>Concanavalin A - chemistry</subject><subject>Cryogels</subject><subject>Dose-Response Relationship, Drug</subject><subject>Edetic Acid - pharmacology</subject><subject>Elastic tissue</subject><subject>Elasticity</subject><subject>Elution</subject><subject>Engineering and Technology</subject><subject>Escherichia coli - metabolism</subject><subject>Fibronectins - chemistry</subject><subject>Gels</subject><subject>Hot Temperature</subject><subject>Humans</subject><subject>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</subject><subject>Hydrogels - chemistry</subject><subject>Imidazoles</subject><subject>Immunoglobulin G - chemistry</subject><subject>Inclusion bodies</subject><subject>Industrial Biotechnology</subject><subject>Industriell bioteknik</subject><subject>Ions</subject><subject>Ligands</subject><subject>Microscopy, Electron, Scanning</subject><subject>Molecules</subject><subject>polyvalent interactions</subject><subject>Porous materials</subject><subject>Protein Binding</subject><subject>Recombinant Proteins - chemistry</subject><subject>Sorption</subject><subject>Staphylococcal Protein A</subject><subject>Teknik</subject><subject>thermosensitive hydrogels</subject><subject>Viability</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kk1v1DAQhi0EotvCmRMo4tBb2vFHYvuC1G4LRVrEBY7IcpJxm1U2DrYD7L_Hq1116YWDZVnzzGNrXhPyhsIFBckvp9HGC6hACc4o8GdkQUHTshYanpMFAJOlEkyckNMY1wCgKwUvyQmtBVVMsQX5cYPJtg8bHFPhXXHlXD_2aVsu7ZTmgF1x3fvJhtS3A8ai2Ra3g435VNyg82FjU-_HXaMtvtg2-MkHP8fibtsFf4_DK_LC2SHi68N-Rr5_vP22vCtXXz99Xl6tyraqVCqbBmtkUtdca5RMNJRZJ3mHttINFbVlgjmlKsFb7jQoQNtRyTqQFXfWAT8jq703_sZpbswU-o0NW-Ntb4Z5yqvJy0Q0zPGGVsgM1CiNaGVtdKW56SRXUGWfBp51H_a67Npg1-bhBDs8sT6tjP2Dufe_DOVCar17z_uDIPifM8Zk1n4OYx6BYUC5ziHVGbrcQ3luMQZ0jxdQMLt0zS5dc0w3d7z7911H_hBnBs4PwK7zqONGGCW0cfMwJPyTMvj2f-Cxvo7Jh0eAA-SfpTn_C2-6wYs</recordid><startdate>20060124</startdate><enddate>20060124</enddate><creator>Dainiak, Maria B.</creator><creator>Kumar, Ashok</creator><creator>Galaev, Igor Yu</creator><creator>Mattiasson, Bo</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D95</scope></search><sort><creationdate>20060124</creationdate><title>Detachment of Affinity-Captured Bioparticles by Elastic Deformation of a Macroporous Hydrogel</title><author>Dainiak, Maria B. ; Kumar, Ashok ; Galaev, Igor Yu ; Mattiasson, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-bbe6e2796399e724b12af73dea59b146a242f88543c3f9080ead172d0753faf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adsorbents</topic><topic>Adsorption</topic><topic>affinity cryogel monoliths</topic><topic>Animals</topic><topic>Antigens, CD34 - biosynthesis</topic><topic>Binding sites</topic><topic>Biological Sciences</topic><topic>Blood Proteins - chemistry</topic><topic>Cell Line, Tumor</topic><topic>cell release</topic><topic>cell separation</topic><topic>Cellular biology</topic><topic>Chelating Agents - pharmacology</topic><topic>Chromatography, Affinity</topic><topic>Concanavalin A - chemistry</topic><topic>Cryogels</topic><topic>Dose-Response Relationship, Drug</topic><topic>Edetic Acid - pharmacology</topic><topic>Elastic tissue</topic><topic>Elasticity</topic><topic>Elution</topic><topic>Engineering and Technology</topic><topic>Escherichia coli - metabolism</topic><topic>Fibronectins - chemistry</topic><topic>Gels</topic><topic>Hot Temperature</topic><topic>Humans</topic><topic>Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry</topic><topic>Hydrogels - chemistry</topic><topic>Imidazoles</topic><topic>Immunoglobulin G - chemistry</topic><topic>Inclusion bodies</topic><topic>Industrial Biotechnology</topic><topic>Industriell bioteknik</topic><topic>Ions</topic><topic>Ligands</topic><topic>Microscopy, Electron, Scanning</topic><topic>Molecules</topic><topic>polyvalent interactions</topic><topic>Porous materials</topic><topic>Protein Binding</topic><topic>Recombinant Proteins - chemistry</topic><topic>Sorption</topic><topic>Staphylococcal Protein A</topic><topic>Teknik</topic><topic>thermosensitive hydrogels</topic><topic>Viability</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dainiak, Maria B.</creatorcontrib><creatorcontrib>Kumar, Ashok</creatorcontrib><creatorcontrib>Galaev, Igor Yu</creatorcontrib><creatorcontrib>Mattiasson, Bo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Lunds universitet</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dainiak, Maria B.</au><au>Kumar, Ashok</au><au>Galaev, Igor Yu</au><au>Mattiasson, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detachment of Affinity-Captured Bioparticles by Elastic Deformation of a Macroporous Hydrogel</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-01-24</date><risdate>2006</risdate><volume>103</volume><issue>4</issue><spage>849</spage><epage>854</epage><pages>849-854</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Adsorption of bioparticles to affinity surfaces involves polyvalent interactions, complicating greatly the recovery of the adsorbed material. A unique system for the efficient binding and release of different cells and particles is described. Affinity-bound bioparticles and synthetic particles are detached from the macroporous hydrogel matrix, a so-called cryogel, when the cryogel undergoes elastic deformation. The particle detachment upon elastic deformation is believed to be due to breaking of many of the multipoint attachments between the particles and the affinity matrix and the change in the distance between affinity ligands when the matrix is deformed. However, no release of affinity-bound protein occurred upon elastic deformation. The phenomenon of particle detachment upon elastic deformation is believed to be of a generic nature, because it was demonstrated for a variety of bioparticles of different sizes and for synthetic particles, for different ligandreceptor pairs (IgG-protein A, sugar-ConA, metal ion-chelating ligand), and when the deformation was caused by either external forces (mechanical deformation) or internal forces (the shrinkage of thermosensitive, macroporous hydrogel upon an increase in temperature). The elasticity of cryogel monoliths ensures high recovery of captured cells under mild conditions, with highly retained viability. This property, along with their continuous porous structure makes cryogel monoliths very attractive for applications in affinity cell separation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16418282</pmid><doi>10.1073/pnas.0508432103</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-01, Vol.103 (4), p.849-854
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmed_primary_16418282
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adsorbents
Adsorption
affinity cryogel monoliths
Animals
Antigens, CD34 - biosynthesis
Binding sites
Biological Sciences
Blood Proteins - chemistry
Cell Line, Tumor
cell release
cell separation
Cellular biology
Chelating Agents - pharmacology
Chromatography, Affinity
Concanavalin A - chemistry
Cryogels
Dose-Response Relationship, Drug
Edetic Acid - pharmacology
Elastic tissue
Elasticity
Elution
Engineering and Technology
Escherichia coli - metabolism
Fibronectins - chemistry
Gels
Hot Temperature
Humans
Hydrogel, Polyethylene Glycol Dimethacrylate - chemistry
Hydrogels - chemistry
Imidazoles
Immunoglobulin G - chemistry
Inclusion bodies
Industrial Biotechnology
Industriell bioteknik
Ions
Ligands
Microscopy, Electron, Scanning
Molecules
polyvalent interactions
Porous materials
Protein Binding
Recombinant Proteins - chemistry
Sorption
Staphylococcal Protein A
Teknik
thermosensitive hydrogels
Viability
Yeasts
title Detachment of Affinity-Captured Bioparticles by Elastic Deformation of a Macroporous Hydrogel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detachment%20of%20Affinity-Captured%20Bioparticles%20by%20Elastic%20Deformation%20of%20a%20Macroporous%20Hydrogel&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Dainiak,%20Maria%20B.&rft.date=2006-01-24&rft.volume=103&rft.issue=4&rft.spage=849&rft.epage=854&rft.pages=849-854&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0508432103&rft_dat=%3Cjstor_pubme%3E30049093%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201391096&rft_id=info:pmid/16418282&rft_jstor_id=30049093&rfr_iscdi=true