Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images

This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2005-12, Vol.24 (12), p.1548-1565
Hauptverfasser: Cuadra, M.B., Cammoun, L., Butz, T., Cuisenaire, O., Thiran, J.-P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1565
container_issue 12
container_start_page 1548
container_title IEEE transactions on medical imaging
container_volume 24
creator Cuadra, M.B.
Cammoun, L.
Butz, T.
Cuisenaire, O.
Thiran, J.-P.
description This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.
doi_str_mv 10.1109/TMI.2005.857652
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_16350916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1546117</ieee_id><sourcerecordid>68894489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-6e34a76f5e0278a7a85e7ff702b73a4e296be7b0725e4ee4583a5f9019db4a053</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhoMo7rh69iBI8OCtZyvfyVEGPxZ2EWQEbyHdXb2bpbszdrpX9NebsQcWvOwpb6qeFFQeQl4z2DIG7mJ_fbnlAGprldGKPyEbppStuJI_npINcGMrAM3PyIuc7wCYVOCekzOmRQlMb8j9Lg2HMMWcRhrGlt6HPrZhjuWaOjrHnBekQ2qxj3_W8pHKc8l5jk3oadOHnGNX8r_2gPNtajONI92z6hfGm9sZW3r9jdZTKMU4hBvML8mzLvQZX53Oc_L908f97kt19fXz5e7DVdUoZeZKo5DB6E7hcZVgglVous4Ar40IErnTNZoaDFcoEaWyIqjOAXNtLQMocU7er3MPU_q5YJ79EHODfR9GTEv22lonpXWPgty4AjrxKMic5NoaKOC7_8C7tExj2dZbK6QQHEyBLlaomVLOE3b-MJUfmn57Bv5o2BfD_mjYr4bLi7ensUs9YPvAn5QW4M0KRER8aCupGTPiL9kDqnU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883433207</pqid></control><display><type>article</type><title>Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images</title><source>IEEE Electronic Library (IEL)</source><creator>Cuadra, M.B. ; Cammoun, L. ; Butz, T. ; Cuisenaire, O. ; Thiran, J.-P.</creator><creatorcontrib>Cuadra, M.B. ; Cammoun, L. ; Butz, T. ; Cuisenaire, O. ; Thiran, J.-P.</creatorcontrib><description>This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2005.857652</identifier><identifier>PMID: 16350916</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Algorithms ; Artificial Intelligence ; Brain - anatomy &amp; histology ; Brain modeling ; Brain tissue models ; Computer Simulation ; Female ; hidden Markov random fields models ; Humans ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image quality ; Image segmentation ; Imaging, Three-Dimensional - methods ; Labeling ; Magnetic field measurement ; Magnetic noise ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Models, Biological ; Models, Statistical ; Noise robustness ; partial volume ; Pattern Recognition, Automated - methods ; Reproducibility of Results ; Sensitivity and Specificity ; statistical classification ; Testing ; Validation studies ; validation study</subject><ispartof>IEEE transactions on medical imaging, 2005-12, Vol.24 (12), p.1548-1565</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-6e34a76f5e0278a7a85e7ff702b73a4e296be7b0725e4ee4583a5f9019db4a053</citedby><cites>FETCH-LOGICAL-c557t-6e34a76f5e0278a7a85e7ff702b73a4e296be7b0725e4ee4583a5f9019db4a053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1546117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1546117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16350916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cuadra, M.B.</creatorcontrib><creatorcontrib>Cammoun, L.</creatorcontrib><creatorcontrib>Butz, T.</creatorcontrib><creatorcontrib>Cuisenaire, O.</creatorcontrib><creatorcontrib>Thiran, J.-P.</creatorcontrib><title>Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain modeling</subject><subject>Brain tissue models</subject><subject>Computer Simulation</subject><subject>Female</subject><subject>hidden Markov random fields models</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Labeling</subject><subject>Magnetic field measurement</subject><subject>Magnetic noise</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Noise robustness</subject><subject>partial volume</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>statistical classification</subject><subject>Testing</subject><subject>Validation studies</subject><subject>validation study</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkU2LFDEQhoMo7rh69iBI8OCtZyvfyVEGPxZ2EWQEbyHdXb2bpbszdrpX9NebsQcWvOwpb6qeFFQeQl4z2DIG7mJ_fbnlAGprldGKPyEbppStuJI_npINcGMrAM3PyIuc7wCYVOCekzOmRQlMb8j9Lg2HMMWcRhrGlt6HPrZhjuWaOjrHnBekQ2qxj3_W8pHKc8l5jk3oadOHnGNX8r_2gPNtajONI92z6hfGm9sZW3r9jdZTKMU4hBvML8mzLvQZX53Oc_L908f97kt19fXz5e7DVdUoZeZKo5DB6E7hcZVgglVous4Ar40IErnTNZoaDFcoEaWyIqjOAXNtLQMocU7er3MPU_q5YJ79EHODfR9GTEv22lonpXWPgty4AjrxKMic5NoaKOC7_8C7tExj2dZbK6QQHEyBLlaomVLOE3b-MJUfmn57Bv5o2BfD_mjYr4bLi7ensUs9YPvAn5QW4M0KRER8aCupGTPiL9kDqnU</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Cuadra, M.B.</creator><creator>Cammoun, L.</creator><creator>Butz, T.</creator><creator>Cuisenaire, O.</creator><creator>Thiran, J.-P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200512</creationdate><title>Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images</title><author>Cuadra, M.B. ; Cammoun, L. ; Butz, T. ; Cuisenaire, O. ; Thiran, J.-P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-6e34a76f5e0278a7a85e7ff702b73a4e296be7b0725e4ee4583a5f9019db4a053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain modeling</topic><topic>Brain tissue models</topic><topic>Computer Simulation</topic><topic>Female</topic><topic>hidden Markov random fields models</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Labeling</topic><topic>Magnetic field measurement</topic><topic>Magnetic noise</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Noise robustness</topic><topic>partial volume</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>statistical classification</topic><topic>Testing</topic><topic>Validation studies</topic><topic>validation study</topic><toplevel>online_resources</toplevel><creatorcontrib>Cuadra, M.B.</creatorcontrib><creatorcontrib>Cammoun, L.</creatorcontrib><creatorcontrib>Butz, T.</creatorcontrib><creatorcontrib>Cuisenaire, O.</creatorcontrib><creatorcontrib>Thiran, J.-P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cuadra, M.B.</au><au>Cammoun, L.</au><au>Butz, T.</au><au>Cuisenaire, O.</au><au>Thiran, J.-P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2005-12</date><risdate>2005</risdate><volume>24</volume><issue>12</issue><spage>1548</spage><epage>1565</epage><pages>1548-1565</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>16350916</pmid><doi>10.1109/TMI.2005.857652</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2005-12, Vol.24 (12), p.1548-1565
issn 0278-0062
1558-254X
language eng
recordid cdi_pubmed_primary_16350916
source IEEE Electronic Library (IEL)
subjects Adult
Algorithms
Artificial Intelligence
Brain - anatomy & histology
Brain modeling
Brain tissue models
Computer Simulation
Female
hidden Markov random fields models
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image quality
Image segmentation
Imaging, Three-Dimensional - methods
Labeling
Magnetic field measurement
Magnetic noise
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Models, Biological
Models, Statistical
Noise robustness
partial volume
Pattern Recognition, Automated - methods
Reproducibility of Results
Sensitivity and Specificity
statistical classification
Testing
Validation studies
validation study
title Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20and%20validation%20of%20tissue%20modelization%20and%20statistical%20classification%20methods%20in%20T1-weighted%20MR%20brain%20images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Cuadra,%20M.B.&rft.date=2005-12&rft.volume=24&rft.issue=12&rft.spage=1548&rft.epage=1565&rft.pages=1548-1565&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2005.857652&rft_dat=%3Cproquest_RIE%3E68894489%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883433207&rft_id=info:pmid/16350916&rft_ieee_id=1546117&rfr_iscdi=true