The Crystal Structure of CREG, a Secreted Glycoprotein Involved in Cellular Growth and Differentiation
The cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein that inhibits proliferation and enhances differentiation of human embryonal carcinoma cells. CREG binds to the cation-independent mannose 6-phosphate (M6P)/insulin-like growth factor II (IGF2) receptor (IGF2R) (M6P/IGF2...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2005-12, Vol.102 (51), p.18326-18331 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18331 |
---|---|
container_issue | 51 |
container_start_page | 18326 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Sacher, Michael Alessandra Di Bacco Vladimir V. Lunin Zheng Ye Wagner, John Gill, Grace Cygler, Miroslaw Matthews, Brian W. |
description | The cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein that inhibits proliferation and enhances differentiation of human embryonal carcinoma cells. CREG binds to the cation-independent mannose 6-phosphate (M6P)/insulin-like growth factor II (IGF2) receptor (IGF2R) (M6P/IGF2R), and this receptor has been shown to be required for CREG-induced growth suppression. To better understand CREG function in cellular growth and differentiation, we solved the 3D crystal structure of this protein to 1.9-Å resolution. CREG forms a tight homodimeric complex, and CREG monomers display a β-barrel fold. The three potential glycosylation sites on CREG map to a confined patch opposite the dimer interface. Thus, dimerization of glycosylated CREG likely presents a bivalent ligand for the M6P/IGF2R. Closely related structural homologs of CREG are FMN-binding split-barrel fold proteins that bind flavin mononucleotide. Our structure shows that the putative flavin mononucleotide-binding pocket in CREG is sterically blocked by a loop and several key bulky residues. A mutant of CREG lacking a part of this loop maintained overall structure and dimerization, as well as M6P/IGF2R binding, but lost the growth suppression activity of WT CREG. Thus, analysis of a structure-based mutant of CREG revealed that binding to M6P/IGF2R, while necessary, is not sufficient for CREG-induced growth suppression. These findings indicate that CREG utilizes a known fold for a previously undescribed function. |
doi_str_mv | 10.1073/pnas.0505071102 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16344469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4152616</jstor_id><sourcerecordid>4152616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c588t-8c5cdcfbb902ca68ea93159c04475203c8359749efb897e2d9dc2477d6e514423</originalsourceid><addsrcrecordid>eNqFkdGLEzEQxoMoXq0--yIS70EQ7F2STXaTF-FYz3pwIHjnc0izs3ZLmtQkW-1_b0rLVX2ReUiY_OabyXwIvaTkgpKmutx4ky6IKNFQStgjNKFE0VnNFXmMJoSwZiY542foWUorQogSkjxFZ7SuOOe1mqD-fgm4jbuUjcN3OY42jxFw6HH79Xr-Hht8BzZChg7P3c6GTQwZBo9v_Da4bcmWewvOjc5EPI_hZ15i4zv8ceh7iODzYPIQ_HP0pDcuwYvjOUXfPl3ft59nt1_mN-3V7cwKKfNMWmE72y8WijBraglGVVQoSzhvBCOVlZVQDVfQL6RqgHWqs4w3TVeDoJyzaoo-HHQ342INnS0DROP0Jg5rE3c6mEH__eKHpf4etppWtFFEFYE3B4GQ8qCTHTLYpQ3eg81a0aopMUVvj01i-DFCyno9JFuWYDyEMelaKkrLogt4_g-4CmP0ZQGaEcoUIWI_8uUBsjGkFKF_mJYSvTdZ703WJ5NLxes_P3nij64W4N0R2Fee5JgWVFNZsVr3o3MZfuXC4v-wBXl1QFYph_jAcCpYXXr-BqvxxLk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201290052</pqid></control><display><type>article</type><title>The Crystal Structure of CREG, a Secreted Glycoprotein Involved in Cellular Growth and Differentiation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sacher, Michael ; Alessandra Di Bacco ; Vladimir V. Lunin ; Zheng Ye ; Wagner, John ; Gill, Grace ; Cygler, Miroslaw ; Matthews, Brian W.</creator><creatorcontrib>Sacher, Michael ; Alessandra Di Bacco ; Vladimir V. Lunin ; Zheng Ye ; Wagner, John ; Gill, Grace ; Cygler, Miroslaw ; Matthews, Brian W. ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>The cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein that inhibits proliferation and enhances differentiation of human embryonal carcinoma cells. CREG binds to the cation-independent mannose 6-phosphate (M6P)/insulin-like growth factor II (IGF2) receptor (IGF2R) (M6P/IGF2R), and this receptor has been shown to be required for CREG-induced growth suppression. To better understand CREG function in cellular growth and differentiation, we solved the 3D crystal structure of this protein to 1.9-Å resolution. CREG forms a tight homodimeric complex, and CREG monomers display a β-barrel fold. The three potential glycosylation sites on CREG map to a confined patch opposite the dimer interface. Thus, dimerization of glycosylated CREG likely presents a bivalent ligand for the M6P/IGF2R. Closely related structural homologs of CREG are FMN-binding split-barrel fold proteins that bind flavin mononucleotide. Our structure shows that the putative flavin mononucleotide-binding pocket in CREG is sterically blocked by a loop and several key bulky residues. A mutant of CREG lacking a part of this loop maintained overall structure and dimerization, as well as M6P/IGF2R binding, but lost the growth suppression activity of WT CREG. Thus, analysis of a structure-based mutant of CREG revealed that binding to M6P/IGF2R, while necessary, is not sufficient for CREG-induced growth suppression. These findings indicate that CREG utilizes a known fold for a previously undescribed function.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0505071102</identifier><identifier>PMID: 16344469</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Animals ; Biochemistry ; Biological Sciences ; CARCINOMAS ; Cell Differentiation ; Cell growth ; Cell Proliferation ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; Crystals ; DIMERIZATION ; DIMERS ; GENES ; GLYCOPROTEINS ; Glycoproteins - chemistry ; Glycoproteins - genetics ; Glycoproteins - metabolism ; GROWTH FACTORS ; Human growth ; Humans ; MANNOSE ; MATERIALS SCIENCE ; Models, Molecular ; Molecules ; MONOMERS ; MUTANTS ; Mutation - genetics ; national synchrotron light source ; Oxidases ; PROLIFERATION ; Protein Binding ; Protein folding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; PROTEINS ; Receptor, IGF Type 2 - metabolism ; Receptors ; Repressor Proteins - chemistry ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; RESIDUES ; RESOLUTION ; Structural Homology, Protein</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-12, Vol.102 (51), p.18326-18331</ispartof><rights>Copyright 2005 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 20, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c588t-8c5cdcfbb902ca68ea93159c04475203c8359749efb897e2d9dc2477d6e514423</citedby><cites>FETCH-LOGICAL-c588t-8c5cdcfbb902ca68ea93159c04475203c8359749efb897e2d9dc2477d6e514423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/51.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4152616$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4152616$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16344469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/913737$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sacher, Michael</creatorcontrib><creatorcontrib>Alessandra Di Bacco</creatorcontrib><creatorcontrib>Vladimir V. Lunin</creatorcontrib><creatorcontrib>Zheng Ye</creatorcontrib><creatorcontrib>Wagner, John</creatorcontrib><creatorcontrib>Gill, Grace</creatorcontrib><creatorcontrib>Cygler, Miroslaw</creatorcontrib><creatorcontrib>Matthews, Brian W.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>The Crystal Structure of CREG, a Secreted Glycoprotein Involved in Cellular Growth and Differentiation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein that inhibits proliferation and enhances differentiation of human embryonal carcinoma cells. CREG binds to the cation-independent mannose 6-phosphate (M6P)/insulin-like growth factor II (IGF2) receptor (IGF2R) (M6P/IGF2R), and this receptor has been shown to be required for CREG-induced growth suppression. To better understand CREG function in cellular growth and differentiation, we solved the 3D crystal structure of this protein to 1.9-Å resolution. CREG forms a tight homodimeric complex, and CREG monomers display a β-barrel fold. The three potential glycosylation sites on CREG map to a confined patch opposite the dimer interface. Thus, dimerization of glycosylated CREG likely presents a bivalent ligand for the M6P/IGF2R. Closely related structural homologs of CREG are FMN-binding split-barrel fold proteins that bind flavin mononucleotide. Our structure shows that the putative flavin mononucleotide-binding pocket in CREG is sterically blocked by a loop and several key bulky residues. A mutant of CREG lacking a part of this loop maintained overall structure and dimerization, as well as M6P/IGF2R binding, but lost the growth suppression activity of WT CREG. Thus, analysis of a structure-based mutant of CREG revealed that binding to M6P/IGF2R, while necessary, is not sufficient for CREG-induced growth suppression. These findings indicate that CREG utilizes a known fold for a previously undescribed function.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>CARCINOMAS</subject><subject>Cell Differentiation</subject><subject>Cell growth</subject><subject>Cell Proliferation</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>DIMERIZATION</subject><subject>DIMERS</subject><subject>GENES</subject><subject>GLYCOPROTEINS</subject><subject>Glycoproteins - chemistry</subject><subject>Glycoproteins - genetics</subject><subject>Glycoproteins - metabolism</subject><subject>GROWTH FACTORS</subject><subject>Human growth</subject><subject>Humans</subject><subject>MANNOSE</subject><subject>MATERIALS SCIENCE</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>MONOMERS</subject><subject>MUTANTS</subject><subject>Mutation - genetics</subject><subject>national synchrotron light source</subject><subject>Oxidases</subject><subject>PROLIFERATION</subject><subject>Protein Binding</subject><subject>Protein folding</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>PROTEINS</subject><subject>Receptor, IGF Type 2 - metabolism</subject><subject>Receptors</subject><subject>Repressor Proteins - chemistry</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>RESIDUES</subject><subject>RESOLUTION</subject><subject>Structural Homology, Protein</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkdGLEzEQxoMoXq0--yIS70EQ7F2STXaTF-FYz3pwIHjnc0izs3ZLmtQkW-1_b0rLVX2ReUiY_OabyXwIvaTkgpKmutx4ky6IKNFQStgjNKFE0VnNFXmMJoSwZiY542foWUorQogSkjxFZ7SuOOe1mqD-fgm4jbuUjcN3OY42jxFw6HH79Xr-Hht8BzZChg7P3c6GTQwZBo9v_Da4bcmWewvOjc5EPI_hZ15i4zv8ceh7iODzYPIQ_HP0pDcuwYvjOUXfPl3ft59nt1_mN-3V7cwKKfNMWmE72y8WijBraglGVVQoSzhvBCOVlZVQDVfQL6RqgHWqs4w3TVeDoJyzaoo-HHQ342INnS0DROP0Jg5rE3c6mEH__eKHpf4etppWtFFEFYE3B4GQ8qCTHTLYpQ3eg81a0aopMUVvj01i-DFCyno9JFuWYDyEMelaKkrLogt4_g-4CmP0ZQGaEcoUIWI_8uUBsjGkFKF_mJYSvTdZ703WJ5NLxes_P3nij64W4N0R2Fee5JgWVFNZsVr3o3MZfuXC4v-wBXl1QFYph_jAcCpYXXr-BqvxxLk</recordid><startdate>20051220</startdate><enddate>20051220</enddate><creator>Sacher, Michael</creator><creator>Alessandra Di Bacco</creator><creator>Vladimir V. Lunin</creator><creator>Zheng Ye</creator><creator>Wagner, John</creator><creator>Gill, Grace</creator><creator>Cygler, Miroslaw</creator><creator>Matthews, Brian W.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20051220</creationdate><title>The Crystal Structure of CREG, a Secreted Glycoprotein Involved in Cellular Growth and Differentiation</title><author>Sacher, Michael ; Alessandra Di Bacco ; Vladimir V. Lunin ; Zheng Ye ; Wagner, John ; Gill, Grace ; Cygler, Miroslaw ; Matthews, Brian W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c588t-8c5cdcfbb902ca68ea93159c04475203c8359749efb897e2d9dc2477d6e514423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>CARCINOMAS</topic><topic>Cell Differentiation</topic><topic>Cell growth</topic><topic>Cell Proliferation</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>DIMERIZATION</topic><topic>DIMERS</topic><topic>GENES</topic><topic>GLYCOPROTEINS</topic><topic>Glycoproteins - chemistry</topic><topic>Glycoproteins - genetics</topic><topic>Glycoproteins - metabolism</topic><topic>GROWTH FACTORS</topic><topic>Human growth</topic><topic>Humans</topic><topic>MANNOSE</topic><topic>MATERIALS SCIENCE</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>MONOMERS</topic><topic>MUTANTS</topic><topic>Mutation - genetics</topic><topic>national synchrotron light source</topic><topic>Oxidases</topic><topic>PROLIFERATION</topic><topic>Protein Binding</topic><topic>Protein folding</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>PROTEINS</topic><topic>Receptor, IGF Type 2 - metabolism</topic><topic>Receptors</topic><topic>Repressor Proteins - chemistry</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>RESIDUES</topic><topic>RESOLUTION</topic><topic>Structural Homology, Protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sacher, Michael</creatorcontrib><creatorcontrib>Alessandra Di Bacco</creatorcontrib><creatorcontrib>Vladimir V. Lunin</creatorcontrib><creatorcontrib>Zheng Ye</creatorcontrib><creatorcontrib>Wagner, John</creatorcontrib><creatorcontrib>Gill, Grace</creatorcontrib><creatorcontrib>Cygler, Miroslaw</creatorcontrib><creatorcontrib>Matthews, Brian W.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sacher, Michael</au><au>Alessandra Di Bacco</au><au>Vladimir V. Lunin</au><au>Zheng Ye</au><au>Wagner, John</au><au>Gill, Grace</au><au>Cygler, Miroslaw</au><au>Matthews, Brian W.</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Crystal Structure of CREG, a Secreted Glycoprotein Involved in Cellular Growth and Differentiation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-12-20</date><risdate>2005</risdate><volume>102</volume><issue>51</issue><spage>18326</spage><epage>18331</epage><pages>18326-18331</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein that inhibits proliferation and enhances differentiation of human embryonal carcinoma cells. CREG binds to the cation-independent mannose 6-phosphate (M6P)/insulin-like growth factor II (IGF2) receptor (IGF2R) (M6P/IGF2R), and this receptor has been shown to be required for CREG-induced growth suppression. To better understand CREG function in cellular growth and differentiation, we solved the 3D crystal structure of this protein to 1.9-Å resolution. CREG forms a tight homodimeric complex, and CREG monomers display a β-barrel fold. The three potential glycosylation sites on CREG map to a confined patch opposite the dimer interface. Thus, dimerization of glycosylated CREG likely presents a bivalent ligand for the M6P/IGF2R. Closely related structural homologs of CREG are FMN-binding split-barrel fold proteins that bind flavin mononucleotide. Our structure shows that the putative flavin mononucleotide-binding pocket in CREG is sterically blocked by a loop and several key bulky residues. A mutant of CREG lacking a part of this loop maintained overall structure and dimerization, as well as M6P/IGF2R binding, but lost the growth suppression activity of WT CREG. Thus, analysis of a structure-based mutant of CREG revealed that binding to M6P/IGF2R, while necessary, is not sufficient for CREG-induced growth suppression. These findings indicate that CREG utilizes a known fold for a previously undescribed function.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16344469</pmid><doi>10.1073/pnas.0505071102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-12, Vol.102 (51), p.18326-18331 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_16344469 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Animals Biochemistry Biological Sciences CARCINOMAS Cell Differentiation Cell growth Cell Proliferation CRYSTAL STRUCTURE Crystallography, X-Ray Crystals DIMERIZATION DIMERS GENES GLYCOPROTEINS Glycoproteins - chemistry Glycoproteins - genetics Glycoproteins - metabolism GROWTH FACTORS Human growth Humans MANNOSE MATERIALS SCIENCE Models, Molecular Molecules MONOMERS MUTANTS Mutation - genetics national synchrotron light source Oxidases PROLIFERATION Protein Binding Protein folding Protein Structure, Quaternary Protein Structure, Tertiary PROTEINS Receptor, IGF Type 2 - metabolism Receptors Repressor Proteins - chemistry Repressor Proteins - genetics Repressor Proteins - metabolism RESIDUES RESOLUTION Structural Homology, Protein |
title | The Crystal Structure of CREG, a Secreted Glycoprotein Involved in Cellular Growth and Differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Crystal%20Structure%20of%20CREG,%20a%20Secreted%20Glycoprotein%20Involved%20in%20Cellular%20Growth%20and%20Differentiation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Sacher,%20Michael&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2005-12-20&rft.volume=102&rft.issue=51&rft.spage=18326&rft.epage=18331&rft.pages=18326-18331&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0505071102&rft_dat=%3Cjstor_pubme%3E4152616%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201290052&rft_id=info:pmid/16344469&rft_jstor_id=4152616&rfr_iscdi=true |