Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes
MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influence...
Gespeichert in:
Veröffentlicht in: | International journal of hyperthermia 2005-09, Vol.21 (6), p.561-574 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 574 |
---|---|
container_issue | 6 |
container_start_page | 561 |
container_title | International journal of hyperthermia |
container_volume | 21 |
creator | Hekmatyar, S. K. Kerkhoff, R. M. Pakin, S. K. Hopewell, P. Bansal, N. |
description | MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influenced by local motion and susceptibility variations. 1H NMR signals from paramagnetic lanthanide complexes of Pr3+, Yb3+ and Tm3+ show up to 300-fold stronger temperature dependence compared to the water 1H signal. In addition, 1H chemical shifts of many of these complexes are insensitive to other factors such as the concentration of the paramagnetic complex, pH, [Ca2+], and the presence of plasma macro-molecules and ions. Applications of lanthanide complexes for temperature measurement in intact animals and the feasibility of mapping temperatures in phantoms have been demonstrated. Among all the lanthanide complexes examined so far, thulium 1, 4, 7, 10-tetramethyl-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (TmDOTMA−) appears to be the most attractive for in vivo MR thermometry. The 1H signal from the methyl groups on this complex is relatively intense because of 12 equivalent protons and provides high temperature sensitivity because of the large paramagnetic shifts induced by thulium. The possibility of imaging TmDOTMA2-in intact animals at physiologically safe concentrations has recently been demonstrated. Overall, MR thermometry methods based on hyperfine-shifted MR signals from paramagnetic lanthanide complexes appear promising for animal applications, but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical use. |
doi_str_mv | 10.1080/02656730500133801 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16147440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68561036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-879af4d25e7769d03d58cb463bb239eeed44d15f06979517118c26de0e5e28003</originalsourceid><addsrcrecordid>eNp9kEtv1DAUhS1ERYfCD2CDvGIXuE78SAQbVPGS2iIhWFse-3riKrGDnbSdf09GMxJCSF3dxf3O0dFHyCsGbxm08A5qKaRqQACwpmmBPSEbxiWvBBPqKdkc_tUKyHPyvJRbAOCiVs_IOZOMK85hQ8xNiiHemRLukM495jGNOOc9XUqIO9rvJ8w-RKxKH_yMjl7_oCXsohkK9TmNdDLZjGYXcQ6WDibOvYnBIbVpnAZ8wPKCnPmVxpene0F-ff708_JrdfX9y7fLj1eV5QrmqlWd8dzVApWSnYPGidZuuWy227rpENFx7pjwIDvVCaYYa20tHQIKrFuA5oK8OfZOOf1esMx6DMXisG7CtBQtWyEZNHIF2RG0OZWS0esph9HkvWagD171f17XzOtT-bId0f1NnESuwIcjEKJPeTT3KQ9Oz2Y_pOyziTYU3TzW__6feI9mmHtrMurbtOSD7kfW_QEp8ZlO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68561036</pqid></control><display><type>article</type><title>Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes</title><source>MEDLINE</source><source>Taylor & Francis Journals Complete</source><creator>Hekmatyar, S. K. ; Kerkhoff, R. M. ; Pakin, S. K. ; Hopewell, P. ; Bansal, N.</creator><creatorcontrib>Hekmatyar, S. K. ; Kerkhoff, R. M. ; Pakin, S. K. ; Hopewell, P. ; Bansal, N.</creatorcontrib><description>MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influenced by local motion and susceptibility variations. 1H NMR signals from paramagnetic lanthanide complexes of Pr3+, Yb3+ and Tm3+ show up to 300-fold stronger temperature dependence compared to the water 1H signal. In addition, 1H chemical shifts of many of these complexes are insensitive to other factors such as the concentration of the paramagnetic complex, pH, [Ca2+], and the presence of plasma macro-molecules and ions. Applications of lanthanide complexes for temperature measurement in intact animals and the feasibility of mapping temperatures in phantoms have been demonstrated. Among all the lanthanide complexes examined so far, thulium 1, 4, 7, 10-tetramethyl-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (TmDOTMA−) appears to be the most attractive for in vivo MR thermometry. The 1H signal from the methyl groups on this complex is relatively intense because of 12 equivalent protons and provides high temperature sensitivity because of the large paramagnetic shifts induced by thulium. The possibility of imaging TmDOTMA2-in intact animals at physiologically safe concentrations has recently been demonstrated. Overall, MR thermometry methods based on hyperfine-shifted MR signals from paramagnetic lanthanide complexes appear promising for animal applications, but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical use.</description><identifier>ISSN: 0265-6736</identifier><identifier>EISSN: 1464-5157</identifier><identifier>DOI: 10.1080/02656730500133801</identifier><identifier>PMID: 16147440</identifier><language>eng</language><publisher>England: Informa UK Ltd</publisher><subject>1H MRI ; 1H MRS ; Abbreviation ; Animals ; CHESS, chemical shift selective ; CSI, chemical shift imaging; C2T, coefficient of temperature dependence; |C2T|/FWHM, ratio of temperature coefficient and peak width at half maximum ; DOTMA24-, 1, 4, 7, 10-tetraazacyclododecane-α, α′, α′′, α′′′-tetramethyl-1, 4, 7, 10-tetraacetate ; EPSI, echo planar spectroscopic imaging ; FOV, field of view ; HT, hyperthermia ; Humans ; Hyperthermia, Induced ; lanthanide complexes ; Lanthanoid Series Elements - chemistry ; Magnetic Resonance Spectroscopy - methods ; Magnetics ; Molecular Structure ; NMR, nuclear magnetic resonance ; Organometallic Compounds - chemistry ; paramagnetic shift ; Pr[MOE-DO3A], praseodymium 10-(2-methoxyethyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7-triacetate ; RF, radio frequency ; sc, subcutaneous ; SNR, signal-to-noise ratio ; TE, echo time ; Temperature ; Thermography - methods ; Thermometry ; TmDOTA−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate ; TmDOTP5−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetrakis-(methylene phosphonate) ; TR, repetition time ; WSS, weighted signal summation</subject><ispartof>International journal of hyperthermia, 2005-09, Vol.21 (6), p.561-574</ispartof><rights>2005 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-879af4d25e7769d03d58cb463bb239eeed44d15f06979517118c26de0e5e28003</citedby><cites>FETCH-LOGICAL-c470t-879af4d25e7769d03d58cb463bb239eeed44d15f06979517118c26de0e5e28003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02656730500133801$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02656730500133801$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436,61221,61402</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16147440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hekmatyar, S. K.</creatorcontrib><creatorcontrib>Kerkhoff, R. M.</creatorcontrib><creatorcontrib>Pakin, S. K.</creatorcontrib><creatorcontrib>Hopewell, P.</creatorcontrib><creatorcontrib>Bansal, N.</creatorcontrib><title>Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes</title><title>International journal of hyperthermia</title><addtitle>Int J Hyperthermia</addtitle><description>MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influenced by local motion and susceptibility variations. 1H NMR signals from paramagnetic lanthanide complexes of Pr3+, Yb3+ and Tm3+ show up to 300-fold stronger temperature dependence compared to the water 1H signal. In addition, 1H chemical shifts of many of these complexes are insensitive to other factors such as the concentration of the paramagnetic complex, pH, [Ca2+], and the presence of plasma macro-molecules and ions. Applications of lanthanide complexes for temperature measurement in intact animals and the feasibility of mapping temperatures in phantoms have been demonstrated. Among all the lanthanide complexes examined so far, thulium 1, 4, 7, 10-tetramethyl-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (TmDOTMA−) appears to be the most attractive for in vivo MR thermometry. The 1H signal from the methyl groups on this complex is relatively intense because of 12 equivalent protons and provides high temperature sensitivity because of the large paramagnetic shifts induced by thulium. The possibility of imaging TmDOTMA2-in intact animals at physiologically safe concentrations has recently been demonstrated. Overall, MR thermometry methods based on hyperfine-shifted MR signals from paramagnetic lanthanide complexes appear promising for animal applications, but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical use.</description><subject>1H MRI</subject><subject>1H MRS</subject><subject>Abbreviation</subject><subject>Animals</subject><subject>CHESS, chemical shift selective</subject><subject>CSI, chemical shift imaging; C2T, coefficient of temperature dependence; |C2T|/FWHM, ratio of temperature coefficient and peak width at half maximum</subject><subject>DOTMA24-, 1, 4, 7, 10-tetraazacyclododecane-α, α′, α′′, α′′′-tetramethyl-1, 4, 7, 10-tetraacetate</subject><subject>EPSI, echo planar spectroscopic imaging</subject><subject>FOV, field of view</subject><subject>HT, hyperthermia</subject><subject>Humans</subject><subject>Hyperthermia, Induced</subject><subject>lanthanide complexes</subject><subject>Lanthanoid Series Elements - chemistry</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Magnetics</subject><subject>Molecular Structure</subject><subject>NMR, nuclear magnetic resonance</subject><subject>Organometallic Compounds - chemistry</subject><subject>paramagnetic shift</subject><subject>Pr[MOE-DO3A], praseodymium 10-(2-methoxyethyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7-triacetate</subject><subject>RF, radio frequency</subject><subject>sc, subcutaneous</subject><subject>SNR, signal-to-noise ratio</subject><subject>TE, echo time</subject><subject>Temperature</subject><subject>Thermography - methods</subject><subject>Thermometry</subject><subject>TmDOTA−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate</subject><subject>TmDOTP5−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetrakis-(methylene phosphonate)</subject><subject>TR, repetition time</subject><subject>WSS, weighted signal summation</subject><issn>0265-6736</issn><issn>1464-5157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtv1DAUhS1ERYfCD2CDvGIXuE78SAQbVPGS2iIhWFse-3riKrGDnbSdf09GMxJCSF3dxf3O0dFHyCsGbxm08A5qKaRqQACwpmmBPSEbxiWvBBPqKdkc_tUKyHPyvJRbAOCiVs_IOZOMK85hQ8xNiiHemRLukM495jGNOOc9XUqIO9rvJ8w-RKxKH_yMjl7_oCXsohkK9TmNdDLZjGYXcQ6WDibOvYnBIbVpnAZ8wPKCnPmVxpene0F-ff708_JrdfX9y7fLj1eV5QrmqlWd8dzVApWSnYPGidZuuWy227rpENFx7pjwIDvVCaYYa20tHQIKrFuA5oK8OfZOOf1esMx6DMXisG7CtBQtWyEZNHIF2RG0OZWS0esph9HkvWagD171f17XzOtT-bId0f1NnESuwIcjEKJPeTT3KQ9Oz2Y_pOyziTYU3TzW__6feI9mmHtrMurbtOSD7kfW_QEp8ZlO</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Hekmatyar, S. K.</creator><creator>Kerkhoff, R. M.</creator><creator>Pakin, S. K.</creator><creator>Hopewell, P.</creator><creator>Bansal, N.</creator><general>Informa UK Ltd</general><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200509</creationdate><title>Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes</title><author>Hekmatyar, S. K. ; Kerkhoff, R. M. ; Pakin, S. K. ; Hopewell, P. ; Bansal, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-879af4d25e7769d03d58cb463bb239eeed44d15f06979517118c26de0e5e28003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>1H MRI</topic><topic>1H MRS</topic><topic>Abbreviation</topic><topic>Animals</topic><topic>CHESS, chemical shift selective</topic><topic>CSI, chemical shift imaging; C2T, coefficient of temperature dependence; |C2T|/FWHM, ratio of temperature coefficient and peak width at half maximum</topic><topic>DOTMA24-, 1, 4, 7, 10-tetraazacyclododecane-α, α′, α′′, α′′′-tetramethyl-1, 4, 7, 10-tetraacetate</topic><topic>EPSI, echo planar spectroscopic imaging</topic><topic>FOV, field of view</topic><topic>HT, hyperthermia</topic><topic>Humans</topic><topic>Hyperthermia, Induced</topic><topic>lanthanide complexes</topic><topic>Lanthanoid Series Elements - chemistry</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Magnetics</topic><topic>Molecular Structure</topic><topic>NMR, nuclear magnetic resonance</topic><topic>Organometallic Compounds - chemistry</topic><topic>paramagnetic shift</topic><topic>Pr[MOE-DO3A], praseodymium 10-(2-methoxyethyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7-triacetate</topic><topic>RF, radio frequency</topic><topic>sc, subcutaneous</topic><topic>SNR, signal-to-noise ratio</topic><topic>TE, echo time</topic><topic>Temperature</topic><topic>Thermography - methods</topic><topic>Thermometry</topic><topic>TmDOTA−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate</topic><topic>TmDOTP5−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetrakis-(methylene phosphonate)</topic><topic>TR, repetition time</topic><topic>WSS, weighted signal summation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hekmatyar, S. K.</creatorcontrib><creatorcontrib>Kerkhoff, R. M.</creatorcontrib><creatorcontrib>Pakin, S. K.</creatorcontrib><creatorcontrib>Hopewell, P.</creatorcontrib><creatorcontrib>Bansal, N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of hyperthermia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hekmatyar, S. K.</au><au>Kerkhoff, R. M.</au><au>Pakin, S. K.</au><au>Hopewell, P.</au><au>Bansal, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes</atitle><jtitle>International journal of hyperthermia</jtitle><addtitle>Int J Hyperthermia</addtitle><date>2005-09</date><risdate>2005</risdate><volume>21</volume><issue>6</issue><spage>561</spage><epage>574</epage><pages>561-574</pages><issn>0265-6736</issn><eissn>1464-5157</eissn><abstract>MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influenced by local motion and susceptibility variations. 1H NMR signals from paramagnetic lanthanide complexes of Pr3+, Yb3+ and Tm3+ show up to 300-fold stronger temperature dependence compared to the water 1H signal. In addition, 1H chemical shifts of many of these complexes are insensitive to other factors such as the concentration of the paramagnetic complex, pH, [Ca2+], and the presence of plasma macro-molecules and ions. Applications of lanthanide complexes for temperature measurement in intact animals and the feasibility of mapping temperatures in phantoms have been demonstrated. Among all the lanthanide complexes examined so far, thulium 1, 4, 7, 10-tetramethyl-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (TmDOTMA−) appears to be the most attractive for in vivo MR thermometry. The 1H signal from the methyl groups on this complex is relatively intense because of 12 equivalent protons and provides high temperature sensitivity because of the large paramagnetic shifts induced by thulium. The possibility of imaging TmDOTMA2-in intact animals at physiologically safe concentrations has recently been demonstrated. Overall, MR thermometry methods based on hyperfine-shifted MR signals from paramagnetic lanthanide complexes appear promising for animal applications, but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical use.</abstract><cop>England</cop><pub>Informa UK Ltd</pub><pmid>16147440</pmid><doi>10.1080/02656730500133801</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0265-6736 |
ispartof | International journal of hyperthermia, 2005-09, Vol.21 (6), p.561-574 |
issn | 0265-6736 1464-5157 |
language | eng |
recordid | cdi_pubmed_primary_16147440 |
source | MEDLINE; Taylor & Francis Journals Complete |
subjects | 1H MRI 1H MRS Abbreviation Animals CHESS, chemical shift selective CSI, chemical shift imaging C2T, coefficient of temperature dependence |C2T|/FWHM, ratio of temperature coefficient and peak width at half maximum DOTMA24-, 1, 4, 7, 10-tetraazacyclododecane-α, α′, α′′, α′′′-tetramethyl-1, 4, 7, 10-tetraacetate EPSI, echo planar spectroscopic imaging FOV, field of view HT, hyperthermia Humans Hyperthermia, Induced lanthanide complexes Lanthanoid Series Elements - chemistry Magnetic Resonance Spectroscopy - methods Magnetics Molecular Structure NMR, nuclear magnetic resonance Organometallic Compounds - chemistry paramagnetic shift Pr[MOE-DO3A], praseodymium 10-(2-methoxyethyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7-triacetate RF, radio frequency sc, subcutaneous SNR, signal-to-noise ratio TE, echo time Temperature Thermography - methods Thermometry TmDOTA−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate TmDOTP5−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetrakis-(methylene phosphonate) TR, repetition time WSS, weighted signal summation |
title | Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20thermometry%20using%20hyperfine-shifted%20MR%20signals%20from%20paramagnetic%20lanthanide%20complexes&rft.jtitle=International%20journal%20of%20hyperthermia&rft.au=Hekmatyar,%20S.%20K.&rft.date=2005-09&rft.volume=21&rft.issue=6&rft.spage=561&rft.epage=574&rft.pages=561-574&rft.issn=0265-6736&rft.eissn=1464-5157&rft_id=info:doi/10.1080/02656730500133801&rft_dat=%3Cproquest_pubme%3E68561036%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68561036&rft_id=info:pmid/16147440&rfr_iscdi=true |