Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes

MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hyperthermia 2005-09, Vol.21 (6), p.561-574
Hauptverfasser: Hekmatyar, S. K., Kerkhoff, R. M., Pakin, S. K., Hopewell, P., Bansal, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 574
container_issue 6
container_start_page 561
container_title International journal of hyperthermia
container_volume 21
creator Hekmatyar, S. K.
Kerkhoff, R. M.
Pakin, S. K.
Hopewell, P.
Bansal, N.
description MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influenced by local motion and susceptibility variations. 1H NMR signals from paramagnetic lanthanide complexes of Pr3+, Yb3+ and Tm3+ show up to 300-fold stronger temperature dependence compared to the water 1H signal. In addition, 1H chemical shifts of many of these complexes are insensitive to other factors such as the concentration of the paramagnetic complex, pH, [Ca2+], and the presence of plasma macro-molecules and ions. Applications of lanthanide complexes for temperature measurement in intact animals and the feasibility of mapping temperatures in phantoms have been demonstrated. Among all the lanthanide complexes examined so far, thulium 1, 4, 7, 10-tetramethyl-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (TmDOTMA−) appears to be the most attractive for in vivo MR thermometry. The 1H signal from the methyl groups on this complex is relatively intense because of 12 equivalent protons and provides high temperature sensitivity because of the large paramagnetic shifts induced by thulium. The possibility of imaging TmDOTMA2-in intact animals at physiologically safe concentrations has recently been demonstrated. Overall, MR thermometry methods based on hyperfine-shifted MR signals from paramagnetic lanthanide complexes appear promising for animal applications, but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical use.
doi_str_mv 10.1080/02656730500133801
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16147440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68561036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-879af4d25e7769d03d58cb463bb239eeed44d15f06979517118c26de0e5e28003</originalsourceid><addsrcrecordid>eNp9kEtv1DAUhS1ERYfCD2CDvGIXuE78SAQbVPGS2iIhWFse-3riKrGDnbSdf09GMxJCSF3dxf3O0dFHyCsGbxm08A5qKaRqQACwpmmBPSEbxiWvBBPqKdkc_tUKyHPyvJRbAOCiVs_IOZOMK85hQ8xNiiHemRLukM495jGNOOc9XUqIO9rvJ8w-RKxKH_yMjl7_oCXsohkK9TmNdDLZjGYXcQ6WDibOvYnBIbVpnAZ8wPKCnPmVxpene0F-ff708_JrdfX9y7fLj1eV5QrmqlWd8dzVApWSnYPGidZuuWy227rpENFx7pjwIDvVCaYYa20tHQIKrFuA5oK8OfZOOf1esMx6DMXisG7CtBQtWyEZNHIF2RG0OZWS0esph9HkvWagD171f17XzOtT-bId0f1NnESuwIcjEKJPeTT3KQ9Oz2Y_pOyziTYU3TzW__6feI9mmHtrMurbtOSD7kfW_QEp8ZlO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68561036</pqid></control><display><type>article</type><title>Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes</title><source>MEDLINE</source><source>Taylor &amp; Francis Journals Complete</source><creator>Hekmatyar, S. K. ; Kerkhoff, R. M. ; Pakin, S. K. ; Hopewell, P. ; Bansal, N.</creator><creatorcontrib>Hekmatyar, S. K. ; Kerkhoff, R. M. ; Pakin, S. K. ; Hopewell, P. ; Bansal, N.</creatorcontrib><description>MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influenced by local motion and susceptibility variations. 1H NMR signals from paramagnetic lanthanide complexes of Pr3+, Yb3+ and Tm3+ show up to 300-fold stronger temperature dependence compared to the water 1H signal. In addition, 1H chemical shifts of many of these complexes are insensitive to other factors such as the concentration of the paramagnetic complex, pH, [Ca2+], and the presence of plasma macro-molecules and ions. Applications of lanthanide complexes for temperature measurement in intact animals and the feasibility of mapping temperatures in phantoms have been demonstrated. Among all the lanthanide complexes examined so far, thulium 1, 4, 7, 10-tetramethyl-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (TmDOTMA−) appears to be the most attractive for in vivo MR thermometry. The 1H signal from the methyl groups on this complex is relatively intense because of 12 equivalent protons and provides high temperature sensitivity because of the large paramagnetic shifts induced by thulium. The possibility of imaging TmDOTMA2-in intact animals at physiologically safe concentrations has recently been demonstrated. Overall, MR thermometry methods based on hyperfine-shifted MR signals from paramagnetic lanthanide complexes appear promising for animal applications, but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical use.</description><identifier>ISSN: 0265-6736</identifier><identifier>EISSN: 1464-5157</identifier><identifier>DOI: 10.1080/02656730500133801</identifier><identifier>PMID: 16147440</identifier><language>eng</language><publisher>England: Informa UK Ltd</publisher><subject>1H MRI ; 1H MRS ; Abbreviation ; Animals ; CHESS, chemical shift selective ; CSI, chemical shift imaging; C2T, coefficient of temperature dependence; |C2T|/FWHM, ratio of temperature coefficient and peak width at half maximum ; DOTMA24-, 1, 4, 7, 10-tetraazacyclododecane-α, α′, α′′, α′′′-tetramethyl-1, 4, 7, 10-tetraacetate ; EPSI, echo planar spectroscopic imaging ; FOV, field of view ; HT, hyperthermia ; Humans ; Hyperthermia, Induced ; lanthanide complexes ; Lanthanoid Series Elements - chemistry ; Magnetic Resonance Spectroscopy - methods ; Magnetics ; Molecular Structure ; NMR, nuclear magnetic resonance ; Organometallic Compounds - chemistry ; paramagnetic shift ; Pr[MOE-DO3A], praseodymium 10-(2-methoxyethyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7-triacetate ; RF, radio frequency ; sc, subcutaneous ; SNR, signal-to-noise ratio ; TE, echo time ; Temperature ; Thermography - methods ; Thermometry ; TmDOTA−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate ; TmDOTP5−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetrakis-(methylene phosphonate) ; TR, repetition time ; WSS, weighted signal summation</subject><ispartof>International journal of hyperthermia, 2005-09, Vol.21 (6), p.561-574</ispartof><rights>2005 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-879af4d25e7769d03d58cb463bb239eeed44d15f06979517118c26de0e5e28003</citedby><cites>FETCH-LOGICAL-c470t-879af4d25e7769d03d58cb463bb239eeed44d15f06979517118c26de0e5e28003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02656730500133801$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02656730500133801$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436,61221,61402</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16147440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hekmatyar, S. K.</creatorcontrib><creatorcontrib>Kerkhoff, R. M.</creatorcontrib><creatorcontrib>Pakin, S. K.</creatorcontrib><creatorcontrib>Hopewell, P.</creatorcontrib><creatorcontrib>Bansal, N.</creatorcontrib><title>Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes</title><title>International journal of hyperthermia</title><addtitle>Int J Hyperthermia</addtitle><description>MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influenced by local motion and susceptibility variations. 1H NMR signals from paramagnetic lanthanide complexes of Pr3+, Yb3+ and Tm3+ show up to 300-fold stronger temperature dependence compared to the water 1H signal. In addition, 1H chemical shifts of many of these complexes are insensitive to other factors such as the concentration of the paramagnetic complex, pH, [Ca2+], and the presence of plasma macro-molecules and ions. Applications of lanthanide complexes for temperature measurement in intact animals and the feasibility of mapping temperatures in phantoms have been demonstrated. Among all the lanthanide complexes examined so far, thulium 1, 4, 7, 10-tetramethyl-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (TmDOTMA−) appears to be the most attractive for in vivo MR thermometry. The 1H signal from the methyl groups on this complex is relatively intense because of 12 equivalent protons and provides high temperature sensitivity because of the large paramagnetic shifts induced by thulium. The possibility of imaging TmDOTMA2-in intact animals at physiologically safe concentrations has recently been demonstrated. Overall, MR thermometry methods based on hyperfine-shifted MR signals from paramagnetic lanthanide complexes appear promising for animal applications, but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical use.</description><subject>1H MRI</subject><subject>1H MRS</subject><subject>Abbreviation</subject><subject>Animals</subject><subject>CHESS, chemical shift selective</subject><subject>CSI, chemical shift imaging; C2T, coefficient of temperature dependence; |C2T|/FWHM, ratio of temperature coefficient and peak width at half maximum</subject><subject>DOTMA24-, 1, 4, 7, 10-tetraazacyclododecane-α, α′, α′′, α′′′-tetramethyl-1, 4, 7, 10-tetraacetate</subject><subject>EPSI, echo planar spectroscopic imaging</subject><subject>FOV, field of view</subject><subject>HT, hyperthermia</subject><subject>Humans</subject><subject>Hyperthermia, Induced</subject><subject>lanthanide complexes</subject><subject>Lanthanoid Series Elements - chemistry</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Magnetics</subject><subject>Molecular Structure</subject><subject>NMR, nuclear magnetic resonance</subject><subject>Organometallic Compounds - chemistry</subject><subject>paramagnetic shift</subject><subject>Pr[MOE-DO3A], praseodymium 10-(2-methoxyethyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7-triacetate</subject><subject>RF, radio frequency</subject><subject>sc, subcutaneous</subject><subject>SNR, signal-to-noise ratio</subject><subject>TE, echo time</subject><subject>Temperature</subject><subject>Thermography - methods</subject><subject>Thermometry</subject><subject>TmDOTA−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate</subject><subject>TmDOTP5−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetrakis-(methylene phosphonate)</subject><subject>TR, repetition time</subject><subject>WSS, weighted signal summation</subject><issn>0265-6736</issn><issn>1464-5157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtv1DAUhS1ERYfCD2CDvGIXuE78SAQbVPGS2iIhWFse-3riKrGDnbSdf09GMxJCSF3dxf3O0dFHyCsGbxm08A5qKaRqQACwpmmBPSEbxiWvBBPqKdkc_tUKyHPyvJRbAOCiVs_IOZOMK85hQ8xNiiHemRLukM495jGNOOc9XUqIO9rvJ8w-RKxKH_yMjl7_oCXsohkK9TmNdDLZjGYXcQ6WDibOvYnBIbVpnAZ8wPKCnPmVxpene0F-ff708_JrdfX9y7fLj1eV5QrmqlWd8dzVApWSnYPGidZuuWy227rpENFx7pjwIDvVCaYYa20tHQIKrFuA5oK8OfZOOf1esMx6DMXisG7CtBQtWyEZNHIF2RG0OZWS0esph9HkvWagD171f17XzOtT-bId0f1NnESuwIcjEKJPeTT3KQ9Oz2Y_pOyziTYU3TzW__6feI9mmHtrMurbtOSD7kfW_QEp8ZlO</recordid><startdate>200509</startdate><enddate>200509</enddate><creator>Hekmatyar, S. K.</creator><creator>Kerkhoff, R. M.</creator><creator>Pakin, S. K.</creator><creator>Hopewell, P.</creator><creator>Bansal, N.</creator><general>Informa UK Ltd</general><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200509</creationdate><title>Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes</title><author>Hekmatyar, S. K. ; Kerkhoff, R. M. ; Pakin, S. K. ; Hopewell, P. ; Bansal, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-879af4d25e7769d03d58cb463bb239eeed44d15f06979517118c26de0e5e28003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>1H MRI</topic><topic>1H MRS</topic><topic>Abbreviation</topic><topic>Animals</topic><topic>CHESS, chemical shift selective</topic><topic>CSI, chemical shift imaging; C2T, coefficient of temperature dependence; |C2T|/FWHM, ratio of temperature coefficient and peak width at half maximum</topic><topic>DOTMA24-, 1, 4, 7, 10-tetraazacyclododecane-α, α′, α′′, α′′′-tetramethyl-1, 4, 7, 10-tetraacetate</topic><topic>EPSI, echo planar spectroscopic imaging</topic><topic>FOV, field of view</topic><topic>HT, hyperthermia</topic><topic>Humans</topic><topic>Hyperthermia, Induced</topic><topic>lanthanide complexes</topic><topic>Lanthanoid Series Elements - chemistry</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Magnetics</topic><topic>Molecular Structure</topic><topic>NMR, nuclear magnetic resonance</topic><topic>Organometallic Compounds - chemistry</topic><topic>paramagnetic shift</topic><topic>Pr[MOE-DO3A], praseodymium 10-(2-methoxyethyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7-triacetate</topic><topic>RF, radio frequency</topic><topic>sc, subcutaneous</topic><topic>SNR, signal-to-noise ratio</topic><topic>TE, echo time</topic><topic>Temperature</topic><topic>Thermography - methods</topic><topic>Thermometry</topic><topic>TmDOTA−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate</topic><topic>TmDOTP5−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetrakis-(methylene phosphonate)</topic><topic>TR, repetition time</topic><topic>WSS, weighted signal summation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hekmatyar, S. K.</creatorcontrib><creatorcontrib>Kerkhoff, R. M.</creatorcontrib><creatorcontrib>Pakin, S. K.</creatorcontrib><creatorcontrib>Hopewell, P.</creatorcontrib><creatorcontrib>Bansal, N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of hyperthermia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hekmatyar, S. K.</au><au>Kerkhoff, R. M.</au><au>Pakin, S. K.</au><au>Hopewell, P.</au><au>Bansal, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes</atitle><jtitle>International journal of hyperthermia</jtitle><addtitle>Int J Hyperthermia</addtitle><date>2005-09</date><risdate>2005</risdate><volume>21</volume><issue>6</issue><spage>561</spage><epage>574</epage><pages>561-574</pages><issn>0265-6736</issn><eissn>1464-5157</eissn><abstract>MR thermometry techniques based on the strong water 1H signal provide high spatial and temporal resolution and have shown promise for applications such as laser surgery and RF ablation. However, these techniques have low temperature sensitivity for hyperthermia applications and are greatly influenced by local motion and susceptibility variations. 1H NMR signals from paramagnetic lanthanide complexes of Pr3+, Yb3+ and Tm3+ show up to 300-fold stronger temperature dependence compared to the water 1H signal. In addition, 1H chemical shifts of many of these complexes are insensitive to other factors such as the concentration of the paramagnetic complex, pH, [Ca2+], and the presence of plasma macro-molecules and ions. Applications of lanthanide complexes for temperature measurement in intact animals and the feasibility of mapping temperatures in phantoms have been demonstrated. Among all the lanthanide complexes examined so far, thulium 1, 4, 7, 10-tetramethyl-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (TmDOTMA−) appears to be the most attractive for in vivo MR thermometry. The 1H signal from the methyl groups on this complex is relatively intense because of 12 equivalent protons and provides high temperature sensitivity because of the large paramagnetic shifts induced by thulium. The possibility of imaging TmDOTMA2-in intact animals at physiologically safe concentrations has recently been demonstrated. Overall, MR thermometry methods based on hyperfine-shifted MR signals from paramagnetic lanthanide complexes appear promising for animal applications, but further studies relating to acceptable dose and signal-to-noise ratio are necessary before clinical use.</abstract><cop>England</cop><pub>Informa UK Ltd</pub><pmid>16147440</pmid><doi>10.1080/02656730500133801</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0265-6736
ispartof International journal of hyperthermia, 2005-09, Vol.21 (6), p.561-574
issn 0265-6736
1464-5157
language eng
recordid cdi_pubmed_primary_16147440
source MEDLINE; Taylor & Francis Journals Complete
subjects 1H MRI
1H MRS
Abbreviation
Animals
CHESS, chemical shift selective
CSI, chemical shift imaging
C2T, coefficient of temperature dependence
|C2T|/FWHM, ratio of temperature coefficient and peak width at half maximum
DOTMA24-, 1, 4, 7, 10-tetraazacyclododecane-α, α′, α′′, α′′′-tetramethyl-1, 4, 7, 10-tetraacetate
EPSI, echo planar spectroscopic imaging
FOV, field of view
HT, hyperthermia
Humans
Hyperthermia, Induced
lanthanide complexes
Lanthanoid Series Elements - chemistry
Magnetic Resonance Spectroscopy - methods
Magnetics
Molecular Structure
NMR, nuclear magnetic resonance
Organometallic Compounds - chemistry
paramagnetic shift
Pr[MOE-DO3A], praseodymium 10-(2-methoxyethyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7-triacetate
RF, radio frequency
sc, subcutaneous
SNR, signal-to-noise ratio
TE, echo time
Temperature
Thermography - methods
Thermometry
TmDOTA−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate
TmDOTP5−, thulium 1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetrakis-(methylene phosphonate)
TR, repetition time
WSS, weighted signal summation
title Noninvasive thermometry using hyperfine-shifted MR signals from paramagnetic lanthanide complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20thermometry%20using%20hyperfine-shifted%20MR%20signals%20from%20paramagnetic%20lanthanide%20complexes&rft.jtitle=International%20journal%20of%20hyperthermia&rft.au=Hekmatyar,%20S.%20K.&rft.date=2005-09&rft.volume=21&rft.issue=6&rft.spage=561&rft.epage=574&rft.pages=561-574&rft.issn=0265-6736&rft.eissn=1464-5157&rft_id=info:doi/10.1080/02656730500133801&rft_dat=%3Cproquest_pubme%3E68561036%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68561036&rft_id=info:pmid/16147440&rfr_iscdi=true