Testing Differential Gene Expression in Functional Groups Goeman’s Global Test versus an ANCOVA Approach

Objectives: Single genes are not, in general, the primary focus of gene expression experiments. The researcher might be more interested in relevant pathways, functional sets, or genomic regions consisting of several genes. Efficient statistical tools to handle this task are of interest to research o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods of information in medicine 2005, Vol.44 (3), p.449-453
Hauptverfasser: Mansmann, U, Meister, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 453
container_issue 3
container_start_page 449
container_title Methods of information in medicine
container_volume 44
creator Mansmann, U
Meister, R
description Objectives: Single genes are not, in general, the primary focus of gene expression experiments. The researcher might be more interested in relevant pathways, functional sets, or genomic regions consisting of several genes. Efficient statistical tools to handle this task are of interest to research of biology and medicine. Methods: A simultaneous test on phenotype main effect and gene-phenotype interaction in a two-way layout linear model is introduced as a global test on differential expression for gene groups. Its statistical properties are compared with those of the global test for groups of genes by Goeman et al. [5] in a preliminary simulation study. The procedure presented also allows adjusting for covariates. Results: The proposed ANCOVA global test is equivalent to Goeman’s global test in a setting of independent genes. In our simulation setting for correlated genes, both tests lose power, however with a stronger loss for Goeman’s test. Especially in cases where the asymptotic distribution cannot be used, the stratified use of the ANCOVA global test shows a better performance than Goeman’s test. Conclusions: Our ANCOVA-based approach is a competitive alternative to Goeman’s global test in assessing differential gene expression between groups. It can be extended and generalized in several ways by a modification of the projection matrix.
doi_str_mv 10.1055/s-0038-1633992
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16113772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68502003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-d628255d6c55b33c0bc9e9db2f4b89ef53ffbdb6b4ac3904a5623b8712a7d86f3</originalsourceid><addsrcrecordid>eNrFkk1v1DAQhiMEokvhyhHlxC3FH3E-jqulXZAqeimIm2U7k8ZV4gSP0y174m9w4MBf45fgaFfABXFEsuSR5_E743ecJM8pOaNEiFeYEcKrjBac1zV7kKyYoDQrifj4MFkRwoqMspKcJE8QbwkhVUXyx8kJLSjlZclWye01YLDuJn1t2xY8uGBVn27BQXp-P3lAtKNLrUsvZmdCjJesH-cJ0-0Ig3I_vnyNYT_qmFi00jvwOGOqXLp-t7n6sE7X0-RHZbqnyaNW9QjPjvtp8v7i_HrzJru82r7drC8zIyoesqZgFROiKYwQmnNDtKmhbjRrc13V0AretrrRhc6V4TXJlSgY11VJmSqbqmj5afLyoBvLfppjS3KwaKDvlYNxRllUgrDo2j9BWuesLEoWwbMDaPyI6KGVk7eD8p8lJXIZg0S5jEEexxAvvDgqz3qA5jd-9D0C3w4Amk6FoGbwv6AuhEnudjv5R66BZQ3qRu2tAzmDji5b0wW5Bxsi6G0bwEkl93KA0I0NSjO6eBRQKm86exffp1yjfCMt4gzRhjwKuhmNt1OQeV1J7MZdLD_0sb_v_7s_nMDEv_j3Hn8CgrAFhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19427672</pqid></control><display><type>article</type><title>Testing Differential Gene Expression in Functional Groups Goeman’s Global Test versus an ANCOVA Approach</title><source>Thieme - Connect here FIRST to enable access</source><source>MEDLINE</source><creator>Mansmann, U ; Meister, R</creator><creatorcontrib>Mansmann, U ; Meister, R</creatorcontrib><description>Objectives: Single genes are not, in general, the primary focus of gene expression experiments. The researcher might be more interested in relevant pathways, functional sets, or genomic regions consisting of several genes. Efficient statistical tools to handle this task are of interest to research of biology and medicine. Methods: A simultaneous test on phenotype main effect and gene-phenotype interaction in a two-way layout linear model is introduced as a global test on differential expression for gene groups. Its statistical properties are compared with those of the global test for groups of genes by Goeman et al. [5] in a preliminary simulation study. The procedure presented also allows adjusting for covariates. Results: The proposed ANCOVA global test is equivalent to Goeman’s global test in a setting of independent genes. In our simulation setting for correlated genes, both tests lose power, however with a stronger loss for Goeman’s test. Especially in cases where the asymptotic distribution cannot be used, the stratified use of the ANCOVA global test shows a better performance than Goeman’s test. Conclusions: Our ANCOVA-based approach is a competitive alternative to Goeman’s global test in assessing differential gene expression between groups. It can be extended and generalized in several ways by a modification of the projection matrix.</description><identifier>ISSN: 0026-1270</identifier><identifier>EISSN: 2511-705X</identifier><identifier>DOI: 10.1055/s-0038-1633992</identifier><identifier>PMID: 16113772</identifier><language>eng</language><publisher>Germany: Schattauer Verlag für Medizin und Naturwissenschaften</publisher><subject>Algorithms ; Analysis of Variance ; ANCOVA ; Biomarkers, Tumor ; Gene Expression Profiling - methods ; Gene Expression Profiling - standards ; Genetic Research ; global test ; Mathematical Computing ; Microarrays ; Oligonucleotide Array Sequence Analysis - methods ; Oligonucleotide Array Sequence Analysis - standards ; permutation test ; Signal Transduction - genetics</subject><ispartof>Methods of information in medicine, 2005, Vol.44 (3), p.449-453</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3008,4014,27914,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16113772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mansmann, U</creatorcontrib><creatorcontrib>Meister, R</creatorcontrib><title>Testing Differential Gene Expression in Functional Groups Goeman’s Global Test versus an ANCOVA Approach</title><title>Methods of information in medicine</title><addtitle>Methods Inf Med</addtitle><description>Objectives: Single genes are not, in general, the primary focus of gene expression experiments. The researcher might be more interested in relevant pathways, functional sets, or genomic regions consisting of several genes. Efficient statistical tools to handle this task are of interest to research of biology and medicine. Methods: A simultaneous test on phenotype main effect and gene-phenotype interaction in a two-way layout linear model is introduced as a global test on differential expression for gene groups. Its statistical properties are compared with those of the global test for groups of genes by Goeman et al. [5] in a preliminary simulation study. The procedure presented also allows adjusting for covariates. Results: The proposed ANCOVA global test is equivalent to Goeman’s global test in a setting of independent genes. In our simulation setting for correlated genes, both tests lose power, however with a stronger loss for Goeman’s test. Especially in cases where the asymptotic distribution cannot be used, the stratified use of the ANCOVA global test shows a better performance than Goeman’s test. Conclusions: Our ANCOVA-based approach is a competitive alternative to Goeman’s global test in assessing differential gene expression between groups. It can be extended and generalized in several ways by a modification of the projection matrix.</description><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>ANCOVA</subject><subject>Biomarkers, Tumor</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Profiling - standards</subject><subject>Genetic Research</subject><subject>global test</subject><subject>Mathematical Computing</subject><subject>Microarrays</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oligonucleotide Array Sequence Analysis - standards</subject><subject>permutation test</subject><subject>Signal Transduction - genetics</subject><issn>0026-1270</issn><issn>2511-705X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNrFkk1v1DAQhiMEokvhyhHlxC3FH3E-jqulXZAqeimIm2U7k8ZV4gSP0y174m9w4MBf45fgaFfABXFEsuSR5_E743ecJM8pOaNEiFeYEcKrjBac1zV7kKyYoDQrifj4MFkRwoqMspKcJE8QbwkhVUXyx8kJLSjlZclWye01YLDuJn1t2xY8uGBVn27BQXp-P3lAtKNLrUsvZmdCjJesH-cJ0-0Ig3I_vnyNYT_qmFi00jvwOGOqXLp-t7n6sE7X0-RHZbqnyaNW9QjPjvtp8v7i_HrzJru82r7drC8zIyoesqZgFROiKYwQmnNDtKmhbjRrc13V0AretrrRhc6V4TXJlSgY11VJmSqbqmj5afLyoBvLfppjS3KwaKDvlYNxRllUgrDo2j9BWuesLEoWwbMDaPyI6KGVk7eD8p8lJXIZg0S5jEEexxAvvDgqz3qA5jd-9D0C3w4Amk6FoGbwv6AuhEnudjv5R66BZQ3qRu2tAzmDji5b0wW5Bxsi6G0bwEkl93KA0I0NSjO6eBRQKm86exffp1yjfCMt4gzRhjwKuhmNt1OQeV1J7MZdLD_0sb_v_7s_nMDEv_j3Hn8CgrAFhg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Mansmann, U</creator><creator>Meister, R</creator><general>Schattauer Verlag für Medizin und Naturwissenschaften</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2005</creationdate><title>Testing Differential Gene Expression in Functional Groups Goeman’s Global Test versus an ANCOVA Approach</title><author>Mansmann, U ; Meister, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-d628255d6c55b33c0bc9e9db2f4b89ef53ffbdb6b4ac3904a5623b8712a7d86f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>ANCOVA</topic><topic>Biomarkers, Tumor</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Profiling - standards</topic><topic>Genetic Research</topic><topic>global test</topic><topic>Mathematical Computing</topic><topic>Microarrays</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oligonucleotide Array Sequence Analysis - standards</topic><topic>permutation test</topic><topic>Signal Transduction - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansmann, U</creatorcontrib><creatorcontrib>Meister, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Methods of information in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansmann, U</au><au>Meister, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing Differential Gene Expression in Functional Groups Goeman’s Global Test versus an ANCOVA Approach</atitle><jtitle>Methods of information in medicine</jtitle><addtitle>Methods Inf Med</addtitle><date>2005</date><risdate>2005</risdate><volume>44</volume><issue>3</issue><spage>449</spage><epage>453</epage><pages>449-453</pages><issn>0026-1270</issn><eissn>2511-705X</eissn><abstract>Objectives: Single genes are not, in general, the primary focus of gene expression experiments. The researcher might be more interested in relevant pathways, functional sets, or genomic regions consisting of several genes. Efficient statistical tools to handle this task are of interest to research of biology and medicine. Methods: A simultaneous test on phenotype main effect and gene-phenotype interaction in a two-way layout linear model is introduced as a global test on differential expression for gene groups. Its statistical properties are compared with those of the global test for groups of genes by Goeman et al. [5] in a preliminary simulation study. The procedure presented also allows adjusting for covariates. Results: The proposed ANCOVA global test is equivalent to Goeman’s global test in a setting of independent genes. In our simulation setting for correlated genes, both tests lose power, however with a stronger loss for Goeman’s test. Especially in cases where the asymptotic distribution cannot be used, the stratified use of the ANCOVA global test shows a better performance than Goeman’s test. Conclusions: Our ANCOVA-based approach is a competitive alternative to Goeman’s global test in assessing differential gene expression between groups. It can be extended and generalized in several ways by a modification of the projection matrix.</abstract><cop>Germany</cop><pub>Schattauer Verlag für Medizin und Naturwissenschaften</pub><pmid>16113772</pmid><doi>10.1055/s-0038-1633992</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-1270
ispartof Methods of information in medicine, 2005, Vol.44 (3), p.449-453
issn 0026-1270
2511-705X
language eng
recordid cdi_pubmed_primary_16113772
source Thieme - Connect here FIRST to enable access; MEDLINE
subjects Algorithms
Analysis of Variance
ANCOVA
Biomarkers, Tumor
Gene Expression Profiling - methods
Gene Expression Profiling - standards
Genetic Research
global test
Mathematical Computing
Microarrays
Oligonucleotide Array Sequence Analysis - methods
Oligonucleotide Array Sequence Analysis - standards
permutation test
Signal Transduction - genetics
title Testing Differential Gene Expression in Functional Groups Goeman’s Global Test versus an ANCOVA Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20Differential%20Gene%20Expression%20in%20Functional%20Groups%20Goeman%E2%80%99s%20Global%20Test%20versus%20an%20ANCOVA%20Approach&rft.jtitle=Methods%20of%20information%20in%20medicine&rft.au=Mansmann,%20U&rft.date=2005&rft.volume=44&rft.issue=3&rft.spage=449&rft.epage=453&rft.pages=449-453&rft.issn=0026-1270&rft.eissn=2511-705X&rft_id=info:doi/10.1055/s-0038-1633992&rft_dat=%3Cproquest_pubme%3E68502003%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19427672&rft_id=info:pmid/16113772&rfr_iscdi=true