Testing Differential Gene Expression in Functional Groups Goeman’s Global Test versus an ANCOVA Approach
Objectives: Single genes are not, in general, the primary focus of gene expression experiments. The researcher might be more interested in relevant pathways, functional sets, or genomic regions consisting of several genes. Efficient statistical tools to handle this task are of interest to research o...
Gespeichert in:
Veröffentlicht in: | Methods of information in medicine 2005, Vol.44 (3), p.449-453 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 453 |
---|---|
container_issue | 3 |
container_start_page | 449 |
container_title | Methods of information in medicine |
container_volume | 44 |
creator | Mansmann, U Meister, R |
description | Objectives: Single genes are not, in general, the primary focus of gene expression experiments. The researcher might be more interested in relevant pathways, functional sets, or genomic regions consisting of several genes. Efficient statistical tools to handle this task are of interest to research of biology and medicine. Methods: A simultaneous test on phenotype main effect and gene-phenotype interaction in a two-way layout linear model is introduced as a global test on differential expression for gene groups. Its statistical properties are compared with those of the global test for groups of genes by Goeman et al. [5] in a preliminary simulation study. The procedure presented also allows adjusting for covariates. Results: The proposed ANCOVA global test is equivalent to Goeman’s global test in a setting of independent genes. In our simulation setting for correlated genes, both tests lose power, however with a stronger loss for Goeman’s test. Especially in cases where the asymptotic distribution cannot be used, the stratified use of the ANCOVA global test shows a better performance than Goeman’s test. Conclusions: Our ANCOVA-based approach is a competitive alternative to Goeman’s global test in assessing differential gene expression between groups. It can be extended and generalized in several ways by a modification of the projection matrix. |
doi_str_mv | 10.1055/s-0038-1633992 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16113772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68502003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-d628255d6c55b33c0bc9e9db2f4b89ef53ffbdb6b4ac3904a5623b8712a7d86f3</originalsourceid><addsrcrecordid>eNrFkk1v1DAQhiMEokvhyhHlxC3FH3E-jqulXZAqeimIm2U7k8ZV4gSP0y174m9w4MBf45fgaFfABXFEsuSR5_E743ecJM8pOaNEiFeYEcKrjBac1zV7kKyYoDQrifj4MFkRwoqMspKcJE8QbwkhVUXyx8kJLSjlZclWye01YLDuJn1t2xY8uGBVn27BQXp-P3lAtKNLrUsvZmdCjJesH-cJ0-0Ig3I_vnyNYT_qmFi00jvwOGOqXLp-t7n6sE7X0-RHZbqnyaNW9QjPjvtp8v7i_HrzJru82r7drC8zIyoesqZgFROiKYwQmnNDtKmhbjRrc13V0AretrrRhc6V4TXJlSgY11VJmSqbqmj5afLyoBvLfppjS3KwaKDvlYNxRllUgrDo2j9BWuesLEoWwbMDaPyI6KGVk7eD8p8lJXIZg0S5jEEexxAvvDgqz3qA5jd-9D0C3w4Amk6FoGbwv6AuhEnudjv5R66BZQ3qRu2tAzmDji5b0wW5Bxsi6G0bwEkl93KA0I0NSjO6eBRQKm86exffp1yjfCMt4gzRhjwKuhmNt1OQeV1J7MZdLD_0sb_v_7s_nMDEv_j3Hn8CgrAFhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19427672</pqid></control><display><type>article</type><title>Testing Differential Gene Expression in Functional Groups Goeman’s Global Test versus an ANCOVA Approach</title><source>Thieme - Connect here FIRST to enable access</source><source>MEDLINE</source><creator>Mansmann, U ; Meister, R</creator><creatorcontrib>Mansmann, U ; Meister, R</creatorcontrib><description>Objectives: Single genes are not, in general, the primary focus of gene expression experiments. The researcher might be more interested in relevant pathways, functional sets, or genomic regions consisting of several genes. Efficient statistical tools to handle this task are of interest to research of biology and medicine. Methods: A simultaneous test on phenotype main effect and gene-phenotype interaction in a two-way layout linear model is introduced as a global test on differential expression for gene groups. Its statistical properties are compared with those of the global test for groups of genes by Goeman et al. [5] in a preliminary simulation study. The procedure presented also allows adjusting for covariates. Results: The proposed ANCOVA global test is equivalent to Goeman’s global test in a setting of independent genes. In our simulation setting for correlated genes, both tests lose power, however with a stronger loss for Goeman’s test. Especially in cases where the asymptotic distribution cannot be used, the stratified use of the ANCOVA global test shows a better performance than Goeman’s test. Conclusions: Our ANCOVA-based approach is a competitive alternative to Goeman’s global test in assessing differential gene expression between groups. It can be extended and generalized in several ways by a modification of the projection matrix.</description><identifier>ISSN: 0026-1270</identifier><identifier>EISSN: 2511-705X</identifier><identifier>DOI: 10.1055/s-0038-1633992</identifier><identifier>PMID: 16113772</identifier><language>eng</language><publisher>Germany: Schattauer Verlag für Medizin und Naturwissenschaften</publisher><subject>Algorithms ; Analysis of Variance ; ANCOVA ; Biomarkers, Tumor ; Gene Expression Profiling - methods ; Gene Expression Profiling - standards ; Genetic Research ; global test ; Mathematical Computing ; Microarrays ; Oligonucleotide Array Sequence Analysis - methods ; Oligonucleotide Array Sequence Analysis - standards ; permutation test ; Signal Transduction - genetics</subject><ispartof>Methods of information in medicine, 2005, Vol.44 (3), p.449-453</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3008,4014,27914,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16113772$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mansmann, U</creatorcontrib><creatorcontrib>Meister, R</creatorcontrib><title>Testing Differential Gene Expression in Functional Groups Goeman’s Global Test versus an ANCOVA Approach</title><title>Methods of information in medicine</title><addtitle>Methods Inf Med</addtitle><description>Objectives: Single genes are not, in general, the primary focus of gene expression experiments. The researcher might be more interested in relevant pathways, functional sets, or genomic regions consisting of several genes. Efficient statistical tools to handle this task are of interest to research of biology and medicine. Methods: A simultaneous test on phenotype main effect and gene-phenotype interaction in a two-way layout linear model is introduced as a global test on differential expression for gene groups. Its statistical properties are compared with those of the global test for groups of genes by Goeman et al. [5] in a preliminary simulation study. The procedure presented also allows adjusting for covariates. Results: The proposed ANCOVA global test is equivalent to Goeman’s global test in a setting of independent genes. In our simulation setting for correlated genes, both tests lose power, however with a stronger loss for Goeman’s test. Especially in cases where the asymptotic distribution cannot be used, the stratified use of the ANCOVA global test shows a better performance than Goeman’s test. Conclusions: Our ANCOVA-based approach is a competitive alternative to Goeman’s global test in assessing differential gene expression between groups. It can be extended and generalized in several ways by a modification of the projection matrix.</description><subject>Algorithms</subject><subject>Analysis of Variance</subject><subject>ANCOVA</subject><subject>Biomarkers, Tumor</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Profiling - standards</subject><subject>Genetic Research</subject><subject>global test</subject><subject>Mathematical Computing</subject><subject>Microarrays</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Oligonucleotide Array Sequence Analysis - standards</subject><subject>permutation test</subject><subject>Signal Transduction - genetics</subject><issn>0026-1270</issn><issn>2511-705X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNrFkk1v1DAQhiMEokvhyhHlxC3FH3E-jqulXZAqeimIm2U7k8ZV4gSP0y174m9w4MBf45fgaFfABXFEsuSR5_E743ecJM8pOaNEiFeYEcKrjBac1zV7kKyYoDQrifj4MFkRwoqMspKcJE8QbwkhVUXyx8kJLSjlZclWye01YLDuJn1t2xY8uGBVn27BQXp-P3lAtKNLrUsvZmdCjJesH-cJ0-0Ig3I_vnyNYT_qmFi00jvwOGOqXLp-t7n6sE7X0-RHZbqnyaNW9QjPjvtp8v7i_HrzJru82r7drC8zIyoesqZgFROiKYwQmnNDtKmhbjRrc13V0AretrrRhc6V4TXJlSgY11VJmSqbqmj5afLyoBvLfppjS3KwaKDvlYNxRllUgrDo2j9BWuesLEoWwbMDaPyI6KGVk7eD8p8lJXIZg0S5jEEexxAvvDgqz3qA5jd-9D0C3w4Amk6FoGbwv6AuhEnudjv5R66BZQ3qRu2tAzmDji5b0wW5Bxsi6G0bwEkl93KA0I0NSjO6eBRQKm86exffp1yjfCMt4gzRhjwKuhmNt1OQeV1J7MZdLD_0sb_v_7s_nMDEv_j3Hn8CgrAFhg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Mansmann, U</creator><creator>Meister, R</creator><general>Schattauer Verlag für Medizin und Naturwissenschaften</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2005</creationdate><title>Testing Differential Gene Expression in Functional Groups Goeman’s Global Test versus an ANCOVA Approach</title><author>Mansmann, U ; Meister, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-d628255d6c55b33c0bc9e9db2f4b89ef53ffbdb6b4ac3904a5623b8712a7d86f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Analysis of Variance</topic><topic>ANCOVA</topic><topic>Biomarkers, Tumor</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Profiling - standards</topic><topic>Genetic Research</topic><topic>global test</topic><topic>Mathematical Computing</topic><topic>Microarrays</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Oligonucleotide Array Sequence Analysis - standards</topic><topic>permutation test</topic><topic>Signal Transduction - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansmann, U</creatorcontrib><creatorcontrib>Meister, R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Methods of information in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansmann, U</au><au>Meister, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing Differential Gene Expression in Functional Groups Goeman’s Global Test versus an ANCOVA Approach</atitle><jtitle>Methods of information in medicine</jtitle><addtitle>Methods Inf Med</addtitle><date>2005</date><risdate>2005</risdate><volume>44</volume><issue>3</issue><spage>449</spage><epage>453</epage><pages>449-453</pages><issn>0026-1270</issn><eissn>2511-705X</eissn><abstract>Objectives: Single genes are not, in general, the primary focus of gene expression experiments. The researcher might be more interested in relevant pathways, functional sets, or genomic regions consisting of several genes. Efficient statistical tools to handle this task are of interest to research of biology and medicine. Methods: A simultaneous test on phenotype main effect and gene-phenotype interaction in a two-way layout linear model is introduced as a global test on differential expression for gene groups. Its statistical properties are compared with those of the global test for groups of genes by Goeman et al. [5] in a preliminary simulation study. The procedure presented also allows adjusting for covariates. Results: The proposed ANCOVA global test is equivalent to Goeman’s global test in a setting of independent genes. In our simulation setting for correlated genes, both tests lose power, however with a stronger loss for Goeman’s test. Especially in cases where the asymptotic distribution cannot be used, the stratified use of the ANCOVA global test shows a better performance than Goeman’s test. Conclusions: Our ANCOVA-based approach is a competitive alternative to Goeman’s global test in assessing differential gene expression between groups. It can be extended and generalized in several ways by a modification of the projection matrix.</abstract><cop>Germany</cop><pub>Schattauer Verlag für Medizin und Naturwissenschaften</pub><pmid>16113772</pmid><doi>10.1055/s-0038-1633992</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-1270 |
ispartof | Methods of information in medicine, 2005, Vol.44 (3), p.449-453 |
issn | 0026-1270 2511-705X |
language | eng |
recordid | cdi_pubmed_primary_16113772 |
source | Thieme - Connect here FIRST to enable access; MEDLINE |
subjects | Algorithms Analysis of Variance ANCOVA Biomarkers, Tumor Gene Expression Profiling - methods Gene Expression Profiling - standards Genetic Research global test Mathematical Computing Microarrays Oligonucleotide Array Sequence Analysis - methods Oligonucleotide Array Sequence Analysis - standards permutation test Signal Transduction - genetics |
title | Testing Differential Gene Expression in Functional Groups Goeman’s Global Test versus an ANCOVA Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A39%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20Differential%20Gene%20Expression%20in%20Functional%20Groups%20Goeman%E2%80%99s%20Global%20Test%20versus%20an%20ANCOVA%20Approach&rft.jtitle=Methods%20of%20information%20in%20medicine&rft.au=Mansmann,%20U&rft.date=2005&rft.volume=44&rft.issue=3&rft.spage=449&rft.epage=453&rft.pages=449-453&rft.issn=0026-1270&rft.eissn=2511-705X&rft_id=info:doi/10.1055/s-0038-1633992&rft_dat=%3Cproquest_pubme%3E68502003%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19427672&rft_id=info:pmid/16113772&rfr_iscdi=true |