Investigating the neural basis for functional and effective connectivity. Application to fMRI

Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 2005-05, Vol.360 (1457), p.1093-1108
Hauptverfasser: Horwitz, Barry, Warner, Brent, Fitzer, Julie, Tagamets, M.-A, Husain, Fatima T, Long, Theresa W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1108
container_issue 1457
container_start_page 1093
container_title Philosophical transactions of the Royal Society of London. Series B. Biological sciences
container_volume 360
creator Horwitz, Barry
Warner, Brent
Fitzer, Julie
Tagamets, M.-A
Husain, Fatima T
Long, Theresa W
description Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations.
doi_str_mv 10.1098/rstb.2005.1647
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_16087450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30041327</jstor_id><sourcerecordid>30041327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c757t-f3ca7dea53fcc5fb45184bf3e7baea4123cdaec36a304d7850a9336265707d243</originalsourceid><addsrcrecordid>eNp9UsGO0zAUjBCILQtXbqCcuKXYsR0nF8RugVJpEWJZuCHLcezW3dQOtlMoX4_TVIUKsac4nnkz771xkjyFYApBVb50PtTTHAAyhQWm95IJxBRmeUXB_WQCqiLPSoyKs-SR92sAQEUofpicwQKUFBMwSb4tzFb6oJc8aLNMw0qmRvaOt2nNvfapsi5VvRFBWxMvuWlSqZSM_1uZCmvM_qjDbppedF2rBR-YabCp-nC9eJw8ULz18snhe558eff2ZvY-u_o4X8wurjJBCQ2ZQoLTRnKClBBE1ZjAEtcKSVpzyTHMkWi4FKjgCOCGlgTwCqEiLwgFtMkxOk9ejbpdX29kI6QJcQTWOb3hbscs1-wUMXrFlnbLYElwhUAUeHEQcPZ7HxfCNtoL2bbcSNt7VpSYUIpRJE5HonDWeyfV0QQCNiTChkTYkAgbEokFz_9u7Q_9EEEkoJHg7C7uyAotw46tbe_iwv3_ZW_vqrr-fHO5RQXQMPbNQIkgIKQgiP3S3SgVQaa97yXbU07l_3V7NrqtfbDuOAMCAEOUD3g24toH-fOIc3fLCoooYV9LzNCnyzmcgTl7E_mvR_5KL1c_tJPsZIy9e3xcIaa1b3TfYlwDYqpvY66NihLwTgm76w5THovRb9B4_7M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68457743</pqid></control><display><type>article</type><title>Investigating the neural basis for functional and effective connectivity. Application to fMRI</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><creator>Horwitz, Barry ; Warner, Brent ; Fitzer, Julie ; Tagamets, M.-A ; Husain, Fatima T ; Long, Theresa W</creator><creatorcontrib>Horwitz, Barry ; Warner, Brent ; Fitzer, Julie ; Tagamets, M.-A ; Husain, Fatima T ; Long, Theresa W</creatorcontrib><description>Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations.</description><identifier>ISSN: 0962-8436</identifier><identifier>EISSN: 1471-2970</identifier><identifier>DOI: 10.1098/rstb.2005.1647</identifier><identifier>PMID: 16087450</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Anatomy ; Auditory Perception - physiology ; Autoradiography ; Brain ; Brain - anatomy &amp; histology ; Brain - physiology ; Brain Mapping - methods ; Computer Simulation ; Connected regions ; Connectivity ; Functional Magnetic Resonance Imaging ; Human ; Humans ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Modeling ; Models, Neurological ; Nerve Net - physiology ; Neural Modelling ; Neurons ; Neurons - physiology ; Object Processing ; Positron Emission Tomography ; Positron-Emission Tomography - methods ; Region of integration ; Simulations ; Synapses - physiology ; Testing Hypothesis about Connectivity ; Time series ; Visual Perception - physiology</subject><ispartof>Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2005-05, Vol.360 (1457), p.1093-1108</ispartof><rights>Copyright 2005 The Royal Society</rights><rights>2005 The Royal Society</rights><rights>2005 The Royal Society 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c757t-f3ca7dea53fcc5fb45184bf3e7baea4123cdaec36a304d7850a9336265707d243</citedby><cites>FETCH-LOGICAL-c757t-f3ca7dea53fcc5fb45184bf3e7baea4123cdaec36a304d7850a9336265707d243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30041327$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30041327$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16087450$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horwitz, Barry</creatorcontrib><creatorcontrib>Warner, Brent</creatorcontrib><creatorcontrib>Fitzer, Julie</creatorcontrib><creatorcontrib>Tagamets, M.-A</creatorcontrib><creatorcontrib>Husain, Fatima T</creatorcontrib><creatorcontrib>Long, Theresa W</creatorcontrib><title>Investigating the neural basis for functional and effective connectivity. Application to fMRI</title><title>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</title><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><description>Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations.</description><subject>Anatomy</subject><subject>Auditory Perception - physiology</subject><subject>Autoradiography</subject><subject>Brain</subject><subject>Brain - anatomy &amp; histology</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Computer Simulation</subject><subject>Connected regions</subject><subject>Connectivity</subject><subject>Functional Magnetic Resonance Imaging</subject><subject>Human</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Modeling</subject><subject>Models, Neurological</subject><subject>Nerve Net - physiology</subject><subject>Neural Modelling</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Object Processing</subject><subject>Positron Emission Tomography</subject><subject>Positron-Emission Tomography - methods</subject><subject>Region of integration</subject><subject>Simulations</subject><subject>Synapses - physiology</subject><subject>Testing Hypothesis about Connectivity</subject><subject>Time series</subject><subject>Visual Perception - physiology</subject><issn>0962-8436</issn><issn>1471-2970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UsGO0zAUjBCILQtXbqCcuKXYsR0nF8RugVJpEWJZuCHLcezW3dQOtlMoX4_TVIUKsac4nnkz771xkjyFYApBVb50PtTTHAAyhQWm95IJxBRmeUXB_WQCqiLPSoyKs-SR92sAQEUofpicwQKUFBMwSb4tzFb6oJc8aLNMw0qmRvaOt2nNvfapsi5VvRFBWxMvuWlSqZSM_1uZCmvM_qjDbppedF2rBR-YabCp-nC9eJw8ULz18snhe558eff2ZvY-u_o4X8wurjJBCQ2ZQoLTRnKClBBE1ZjAEtcKSVpzyTHMkWi4FKjgCOCGlgTwCqEiLwgFtMkxOk9ejbpdX29kI6QJcQTWOb3hbscs1-wUMXrFlnbLYElwhUAUeHEQcPZ7HxfCNtoL2bbcSNt7VpSYUIpRJE5HonDWeyfV0QQCNiTChkTYkAgbEokFz_9u7Q_9EEEkoJHg7C7uyAotw46tbe_iwv3_ZW_vqrr-fHO5RQXQMPbNQIkgIKQgiP3S3SgVQaa97yXbU07l_3V7NrqtfbDuOAMCAEOUD3g24toH-fOIc3fLCoooYV9LzNCnyzmcgTl7E_mvR_5KL1c_tJPsZIy9e3xcIaa1b3TfYlwDYqpvY66NihLwTgm76w5THovRb9B4_7M</recordid><startdate>20050529</startdate><enddate>20050529</enddate><creator>Horwitz, Barry</creator><creator>Warner, Brent</creator><creator>Fitzer, Julie</creator><creator>Tagamets, M.-A</creator><creator>Husain, Fatima T</creator><creator>Long, Theresa W</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050529</creationdate><title>Investigating the neural basis for functional and effective connectivity. Application to fMRI</title><author>Horwitz, Barry ; Warner, Brent ; Fitzer, Julie ; Tagamets, M.-A ; Husain, Fatima T ; Long, Theresa W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c757t-f3ca7dea53fcc5fb45184bf3e7baea4123cdaec36a304d7850a9336265707d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anatomy</topic><topic>Auditory Perception - physiology</topic><topic>Autoradiography</topic><topic>Brain</topic><topic>Brain - anatomy &amp; histology</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Computer Simulation</topic><topic>Connected regions</topic><topic>Connectivity</topic><topic>Functional Magnetic Resonance Imaging</topic><topic>Human</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Modeling</topic><topic>Models, Neurological</topic><topic>Nerve Net - physiology</topic><topic>Neural Modelling</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Object Processing</topic><topic>Positron Emission Tomography</topic><topic>Positron-Emission Tomography - methods</topic><topic>Region of integration</topic><topic>Simulations</topic><topic>Synapses - physiology</topic><topic>Testing Hypothesis about Connectivity</topic><topic>Time series</topic><topic>Visual Perception - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horwitz, Barry</creatorcontrib><creatorcontrib>Warner, Brent</creatorcontrib><creatorcontrib>Fitzer, Julie</creatorcontrib><creatorcontrib>Tagamets, M.-A</creatorcontrib><creatorcontrib>Husain, Fatima T</creatorcontrib><creatorcontrib>Long, Theresa W</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horwitz, Barry</au><au>Warner, Brent</au><au>Fitzer, Julie</au><au>Tagamets, M.-A</au><au>Husain, Fatima T</au><au>Long, Theresa W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the neural basis for functional and effective connectivity. Application to fMRI</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series B. Biological sciences</jtitle><addtitle>Philos Trans R Soc Lond B Biol Sci</addtitle><date>2005-05-29</date><risdate>2005</risdate><volume>360</volume><issue>1457</issue><spage>1093</spage><epage>1108</epage><pages>1093-1108</pages><issn>0962-8436</issn><eissn>1471-2970</eissn><abstract>Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>16087450</pmid><doi>10.1098/rstb.2005.1647</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0962-8436
ispartof Philosophical transactions of the Royal Society of London. Series B. Biological sciences, 2005-05, Vol.360 (1457), p.1093-1108
issn 0962-8436
1471-2970
language eng
recordid cdi_pubmed_primary_16087450
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central
subjects Anatomy
Auditory Perception - physiology
Autoradiography
Brain
Brain - anatomy & histology
Brain - physiology
Brain Mapping - methods
Computer Simulation
Connected regions
Connectivity
Functional Magnetic Resonance Imaging
Human
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Modeling
Models, Neurological
Nerve Net - physiology
Neural Modelling
Neurons
Neurons - physiology
Object Processing
Positron Emission Tomography
Positron-Emission Tomography - methods
Region of integration
Simulations
Synapses - physiology
Testing Hypothesis about Connectivity
Time series
Visual Perception - physiology
title Investigating the neural basis for functional and effective connectivity. Application to fMRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A23%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20neural%20basis%20for%20functional%20and%20effective%20connectivity.%20Application%20to%20fMRI&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20B.%20Biological%20sciences&rft.au=Horwitz,%20Barry&rft.date=2005-05-29&rft.volume=360&rft.issue=1457&rft.spage=1093&rft.epage=1108&rft.pages=1093-1108&rft.issn=0962-8436&rft.eissn=1471-2970&rft_id=info:doi/10.1098/rstb.2005.1647&rft_dat=%3Cjstor_pubme%3E30041327%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68457743&rft_id=info:pmid/16087450&rft_jstor_id=30041327&rfr_iscdi=true