Structural Basis for the Interaction of Asf1 with Histone H3 and Its Functional Implications

Asf1 is a conserved histone chaperone implicated in nucleosome assembly, transcriptional silencing, and the cellular response to DNA damage. We solved the NMR solution structure of the N-terminal functional domain of the human Asf1a isoform, and we identified by NMR chemical shift mapping a surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-04, Vol.102 (17), p.5975-5980
Hauptverfasser: Mousson, Florence, Lautrette, Aurélie, Thuret, Jean-Yves, Agez, Morgane, Courbeyrette, Régis, Amigues, Béatrice, Becker, Emmanuelle, Neumann, Jean-Michel, Guerois, Raphaël, Mann, Carl, Ochsenbein, Françoise, Felsenfeld, Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5980
container_issue 17
container_start_page 5975
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Mousson, Florence
Lautrette, Aurélie
Thuret, Jean-Yves
Agez, Morgane
Courbeyrette, Régis
Amigues, Béatrice
Becker, Emmanuelle
Neumann, Jean-Michel
Guerois, Raphaël
Mann, Carl
Ochsenbein, Françoise
Felsenfeld, Gary
description Asf1 is a conserved histone chaperone implicated in nucleosome assembly, transcriptional silencing, and the cellular response to DNA damage. We solved the NMR solution structure of the N-terminal functional domain of the human Asf1a isoform, and we identified by NMR chemical shift mapping a surface of Asf1a that binds the C-terminal helix of histone H3. This binding surface forms a highly conserved hydrophobic groove surrounded by charged residues. Mutations within this binding site decreased the affinity of Asf1a for the histone H3/H4 complex in vitro, and the same mutations in the homologous yeast protein led to transcriptional silencing defects, DNA damage sensitivity, and thermosensitive growth. We have thus obtained direct experimental evidence of the mode of binding between a histone and one of its chaperones and genetic data suggesting that this interaction is important in both the DNA damage response and transcriptional silencing.
doi_str_mv 10.1073/pnas.0500149102
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_15840725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3375238</jstor_id><sourcerecordid>3375238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-c78628d7f925b95e52ba43a93dca2d4a63ef67d3ef4b8343dbfa6f50925417543</originalsourceid><addsrcrecordid>eNp90c1v0zAYBnALgVgZnLkgsDggOGR7_RU7F6QyMVqpEgfghmS5jk1TpXGxnQH_PQ6tVtiBS6wov_dx7AehpwQuCEh2uR9MugABQHhDgN5DMwINqWrewH00A6CyUpzyM_QopS0ANELBQ3RGhOIgqZihr59yHG0eo-nxO5O6hH2IOG8cXg7ZRWNzFwYcPJ4nT_CPLm_woks5DA4vGDZDi5c54etx-ANLyHK37ztrprf0GD3wpk_uyXE9R1-u33--WlSrjx-WV_NVZUVNcmWlqqlqpW-oWDfCCbo2nJmGtdbQlpuaOV_Ltjz5WjHO2rU3tRdQOCdScHaO3h5y9-N651rrhlzOo_ex25n4SwfT6X-_DN1Gfws3moCSDYUS8OYQsLkztpivtHVGA5GccypvSLGvjpvF8H10Ketdl6zrezO4MCZNpJJEgCrw5R24DWMsd5Q0BcLqmlFW0OUB2RhSis7fbk9ATxXrqWJ9qrhMPP_7sCd_7LSAF0cwTZ7iaPk1LRo5idf_F9qPfZ_dz1zoswPdltLjrWVMCsoU-w3-E8Le</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201366323</pqid></control><display><type>article</type><title>Structural Basis for the Interaction of Asf1 with Histone H3 and Its Functional Implications</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mousson, Florence ; Lautrette, Aurélie ; Thuret, Jean-Yves ; Agez, Morgane ; Courbeyrette, Régis ; Amigues, Béatrice ; Becker, Emmanuelle ; Neumann, Jean-Michel ; Guerois, Raphaël ; Mann, Carl ; Ochsenbein, Françoise ; Felsenfeld, Gary</creator><creatorcontrib>Mousson, Florence ; Lautrette, Aurélie ; Thuret, Jean-Yves ; Agez, Morgane ; Courbeyrette, Régis ; Amigues, Béatrice ; Becker, Emmanuelle ; Neumann, Jean-Michel ; Guerois, Raphaël ; Mann, Carl ; Ochsenbein, Françoise ; Felsenfeld, Gary</creatorcontrib><description>Asf1 is a conserved histone chaperone implicated in nucleosome assembly, transcriptional silencing, and the cellular response to DNA damage. We solved the NMR solution structure of the N-terminal functional domain of the human Asf1a isoform, and we identified by NMR chemical shift mapping a surface of Asf1a that binds the C-terminal helix of histone H3. This binding surface forms a highly conserved hydrophobic groove surrounded by charged residues. Mutations within this binding site decreased the affinity of Asf1a for the histone H3/H4 complex in vitro, and the same mutations in the homologous yeast protein led to transcriptional silencing defects, DNA damage sensitivity, and thermosensitive growth. We have thus obtained direct experimental evidence of the mode of binding between a histone and one of its chaperones and genetic data suggesting that this interaction is important in both the DNA damage response and transcriptional silencing.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0500149102</identifier><identifier>PMID: 15840725</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Binding Sites ; Biochemistry, Molecular Biology ; Biological Sciences ; Biophysics ; Cell Cycle Proteins - chemistry ; Cell Cycle Proteins - metabolism ; Chemical equilibrium ; Chickens ; DNA ; DNA damage ; DNA repair ; Genetic mutation ; Glutathione Transferase - chemistry ; Glutathione Transferase - metabolism ; Histones ; Histones - chemistry ; Histones - metabolism ; Humans ; Life Sciences ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Mutagenesis, Site-Directed ; Mutation ; Nucleosomes ; Phenotypes ; Plasmids ; Protein Conformation ; Protein Structure, Secondary ; Proteins ; Recombinant Fusion Proteins - chemistry ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-04, Vol.102 (17), p.5975-5980</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Apr 26, 2005</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-c78628d7f925b95e52ba43a93dca2d4a63ef67d3ef4b8343dbfa6f50925417543</citedby><cites>FETCH-LOGICAL-c561t-c78628d7f925b95e52ba43a93dca2d4a63ef67d3ef4b8343dbfa6f50925417543</cites><orcidid>0000-0002-7673-0582</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3375238$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3375238$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15840725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-01744427$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mousson, Florence</creatorcontrib><creatorcontrib>Lautrette, Aurélie</creatorcontrib><creatorcontrib>Thuret, Jean-Yves</creatorcontrib><creatorcontrib>Agez, Morgane</creatorcontrib><creatorcontrib>Courbeyrette, Régis</creatorcontrib><creatorcontrib>Amigues, Béatrice</creatorcontrib><creatorcontrib>Becker, Emmanuelle</creatorcontrib><creatorcontrib>Neumann, Jean-Michel</creatorcontrib><creatorcontrib>Guerois, Raphaël</creatorcontrib><creatorcontrib>Mann, Carl</creatorcontrib><creatorcontrib>Ochsenbein, Françoise</creatorcontrib><creatorcontrib>Felsenfeld, Gary</creatorcontrib><title>Structural Basis for the Interaction of Asf1 with Histone H3 and Its Functional Implications</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Asf1 is a conserved histone chaperone implicated in nucleosome assembly, transcriptional silencing, and the cellular response to DNA damage. We solved the NMR solution structure of the N-terminal functional domain of the human Asf1a isoform, and we identified by NMR chemical shift mapping a surface of Asf1a that binds the C-terminal helix of histone H3. This binding surface forms a highly conserved hydrophobic groove surrounded by charged residues. Mutations within this binding site decreased the affinity of Asf1a for the histone H3/H4 complex in vitro, and the same mutations in the homologous yeast protein led to transcriptional silencing defects, DNA damage sensitivity, and thermosensitive growth. We have thus obtained direct experimental evidence of the mode of binding between a histone and one of its chaperones and genetic data suggesting that this interaction is important in both the DNA damage response and transcriptional silencing.</description><subject>Animals</subject><subject>Binding Sites</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Cell Cycle Proteins - chemistry</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Chemical equilibrium</subject><subject>Chickens</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA repair</subject><subject>Genetic mutation</subject><subject>Glutathione Transferase - chemistry</subject><subject>Glutathione Transferase - metabolism</subject><subject>Histones</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Nucleosomes</subject><subject>Phenotypes</subject><subject>Plasmids</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90c1v0zAYBnALgVgZnLkgsDggOGR7_RU7F6QyMVqpEgfghmS5jk1TpXGxnQH_PQ6tVtiBS6wov_dx7AehpwQuCEh2uR9MugABQHhDgN5DMwINqWrewH00A6CyUpzyM_QopS0ANELBQ3RGhOIgqZihr59yHG0eo-nxO5O6hH2IOG8cXg7ZRWNzFwYcPJ4nT_CPLm_woks5DA4vGDZDi5c54etx-ANLyHK37ztrprf0GD3wpk_uyXE9R1-u33--WlSrjx-WV_NVZUVNcmWlqqlqpW-oWDfCCbo2nJmGtdbQlpuaOV_Ltjz5WjHO2rU3tRdQOCdScHaO3h5y9-N651rrhlzOo_ex25n4SwfT6X-_DN1Gfws3moCSDYUS8OYQsLkztpivtHVGA5GccypvSLGvjpvF8H10Ketdl6zrezO4MCZNpJJEgCrw5R24DWMsd5Q0BcLqmlFW0OUB2RhSis7fbk9ATxXrqWJ9qrhMPP_7sCd_7LSAF0cwTZ7iaPk1LRo5idf_F9qPfZ_dz1zoswPdltLjrWVMCsoU-w3-E8Le</recordid><startdate>20050426</startdate><enddate>20050426</enddate><creator>Mousson, Florence</creator><creator>Lautrette, Aurélie</creator><creator>Thuret, Jean-Yves</creator><creator>Agez, Morgane</creator><creator>Courbeyrette, Régis</creator><creator>Amigues, Béatrice</creator><creator>Becker, Emmanuelle</creator><creator>Neumann, Jean-Michel</creator><creator>Guerois, Raphaël</creator><creator>Mann, Carl</creator><creator>Ochsenbein, Françoise</creator><creator>Felsenfeld, Gary</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7673-0582</orcidid></search><sort><creationdate>20050426</creationdate><title>Structural Basis for the Interaction of Asf1 with Histone H3 and Its Functional Implications</title><author>Mousson, Florence ; Lautrette, Aurélie ; Thuret, Jean-Yves ; Agez, Morgane ; Courbeyrette, Régis ; Amigues, Béatrice ; Becker, Emmanuelle ; Neumann, Jean-Michel ; Guerois, Raphaël ; Mann, Carl ; Ochsenbein, Françoise ; Felsenfeld, Gary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-c78628d7f925b95e52ba43a93dca2d4a63ef67d3ef4b8343dbfa6f50925417543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Binding Sites</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Cell Cycle Proteins - chemistry</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Chemical equilibrium</topic><topic>Chickens</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA repair</topic><topic>Genetic mutation</topic><topic>Glutathione Transferase - chemistry</topic><topic>Glutathione Transferase - metabolism</topic><topic>Histones</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Nucleosomes</topic><topic>Phenotypes</topic><topic>Plasmids</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mousson, Florence</creatorcontrib><creatorcontrib>Lautrette, Aurélie</creatorcontrib><creatorcontrib>Thuret, Jean-Yves</creatorcontrib><creatorcontrib>Agez, Morgane</creatorcontrib><creatorcontrib>Courbeyrette, Régis</creatorcontrib><creatorcontrib>Amigues, Béatrice</creatorcontrib><creatorcontrib>Becker, Emmanuelle</creatorcontrib><creatorcontrib>Neumann, Jean-Michel</creatorcontrib><creatorcontrib>Guerois, Raphaël</creatorcontrib><creatorcontrib>Mann, Carl</creatorcontrib><creatorcontrib>Ochsenbein, Françoise</creatorcontrib><creatorcontrib>Felsenfeld, Gary</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mousson, Florence</au><au>Lautrette, Aurélie</au><au>Thuret, Jean-Yves</au><au>Agez, Morgane</au><au>Courbeyrette, Régis</au><au>Amigues, Béatrice</au><au>Becker, Emmanuelle</au><au>Neumann, Jean-Michel</au><au>Guerois, Raphaël</au><au>Mann, Carl</au><au>Ochsenbein, Françoise</au><au>Felsenfeld, Gary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis for the Interaction of Asf1 with Histone H3 and Its Functional Implications</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-04-26</date><risdate>2005</risdate><volume>102</volume><issue>17</issue><spage>5975</spage><epage>5980</epage><pages>5975-5980</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Asf1 is a conserved histone chaperone implicated in nucleosome assembly, transcriptional silencing, and the cellular response to DNA damage. We solved the NMR solution structure of the N-terminal functional domain of the human Asf1a isoform, and we identified by NMR chemical shift mapping a surface of Asf1a that binds the C-terminal helix of histone H3. This binding surface forms a highly conserved hydrophobic groove surrounded by charged residues. Mutations within this binding site decreased the affinity of Asf1a for the histone H3/H4 complex in vitro, and the same mutations in the homologous yeast protein led to transcriptional silencing defects, DNA damage sensitivity, and thermosensitive growth. We have thus obtained direct experimental evidence of the mode of binding between a histone and one of its chaperones and genetic data suggesting that this interaction is important in both the DNA damage response and transcriptional silencing.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15840725</pmid><doi>10.1073/pnas.0500149102</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7673-0582</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-04, Vol.102 (17), p.5975-5980
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_15840725
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Binding Sites
Biochemistry, Molecular Biology
Biological Sciences
Biophysics
Cell Cycle Proteins - chemistry
Cell Cycle Proteins - metabolism
Chemical equilibrium
Chickens
DNA
DNA damage
DNA repair
Genetic mutation
Glutathione Transferase - chemistry
Glutathione Transferase - metabolism
Histones
Histones - chemistry
Histones - metabolism
Humans
Life Sciences
Magnetic Resonance Spectroscopy
Models, Molecular
Mutagenesis, Site-Directed
Mutation
Nucleosomes
Phenotypes
Plasmids
Protein Conformation
Protein Structure, Secondary
Proteins
Recombinant Fusion Proteins - chemistry
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Yeast
Yeasts
title Structural Basis for the Interaction of Asf1 with Histone H3 and Its Functional Implications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T15%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20for%20the%20Interaction%20of%20Asf1%20with%20Histone%20H3%20and%20Its%20Functional%20Implications&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mousson,%20Florence&rft.date=2005-04-26&rft.volume=102&rft.issue=17&rft.spage=5975&rft.epage=5980&rft.pages=5975-5980&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0500149102&rft_dat=%3Cjstor_pubme%3E3375238%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201366323&rft_id=info:pmid/15840725&rft_jstor_id=3375238&rfr_iscdi=true