Nuclear Ca2+ and CaM kinase IV specify hormonal‐ and Notch‐responsiveness
Many neuronal processes require gene activation by synaptically evoked Ca2+ transients. Ca2+‐dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2005-04, Vol.93 (1), p.171-185 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | 1 |
container_start_page | 171 |
container_title | Journal of neurochemistry |
container_volume | 93 |
creator | Mckenzie, Grahame J. Stevenson, Patrick Ward, George Papadia, Sofia Bading, Hilmar Chawla, Sangeeta Privalsky, Martin Hardingham, Giles E. |
description | Many neuronal processes require gene activation by synaptically evoked Ca2+ transients. Ca2+‐dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch, transcription factors hitherto not thought to be Ca2+‐responsive. This potentiation is occluded by histone deacetylase inhibition, indicating a mechanism involving inactivation of co‐repressors associated with these transcription factors. Synaptic activity, acting via the nuclear Ca2+‐dependent activation of CaM kinase IV, triggers the disruption of subnuclear domains containing class II histone deacetylases (HDACs) and silencing mediator of retinoic acid and thyroid hormone receptors (SMRT), a broad‐specificity co‐repressor which represses nuclear hormone receptors and CBF1. The sequential loss of class II HDACs and SMRT from the subnuclear domains, followed by nuclear export, is associated with disruption of SMRT interaction with its target transcription factors and sensitization of these factors to their activating signal. Counterbalancing these changes, protein phosphatase 1 promotes nuclear localization of SMRT and inactivation of nuclear receptors and CBF1. Thus, the synaptically controlled kinase‐phosphatase balance of the neuron determines the efficacy of SMRT‐mediated repression and the signal‐responsiveness of a variety of transcription factors. |
doi_str_mv | 10.1111/j.1471-4159.2005.03010.x |
format | Article |
fullrecord | <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmed_primary_15773917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JNC3010</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3390-2345396db8a6fe016f22cbda26167b04a5889efa6302225ef435e3ed7a787f153</originalsourceid><addsrcrecordid>eNpFkEtOwzAQhi0EoqVwBeQNK5TgR2wnCxYo4lHUlg2wtSaJrSakSRRTaHccgTNyEpK2UG9mRv8na-ZDCFPi0-5dFT4NFPUCKiKfESJ8wkmXrQ7Q8D84RENCGPM4CdgAnThXEEJlIOkxGlChFI-oGqLpbJmWBlocA7vEUGVdM8VveQXO4PErdo1Jc7vG87pd1BWUP1_fG2pWv6fzbmiNa-rK5R-mMs6doiMLpTNnuzpCL3e3z_GDN3m6H8c3E6_gPCIe44HgkcySEKQ13VaWsTTJgEkqVUICEGEYGQuSdwcwYWzAheEmU6BCZangI3S-_bdZJguT6abNF9Cu9d9dHXCxA8ClUNoWqjR3e05KJkPWc9db7jMvzXqfE9171oXudepep-49641nvdKPs7jv-C-4fnBx</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nuclear Ca2+ and CaM kinase IV specify hormonal‐ and Notch‐responsiveness</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Mckenzie, Grahame J. ; Stevenson, Patrick ; Ward, George ; Papadia, Sofia ; Bading, Hilmar ; Chawla, Sangeeta ; Privalsky, Martin ; Hardingham, Giles E.</creator><creatorcontrib>Mckenzie, Grahame J. ; Stevenson, Patrick ; Ward, George ; Papadia, Sofia ; Bading, Hilmar ; Chawla, Sangeeta ; Privalsky, Martin ; Hardingham, Giles E.</creatorcontrib><description>Many neuronal processes require gene activation by synaptically evoked Ca2+ transients. Ca2+‐dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch, transcription factors hitherto not thought to be Ca2+‐responsive. This potentiation is occluded by histone deacetylase inhibition, indicating a mechanism involving inactivation of co‐repressors associated with these transcription factors. Synaptic activity, acting via the nuclear Ca2+‐dependent activation of CaM kinase IV, triggers the disruption of subnuclear domains containing class II histone deacetylases (HDACs) and silencing mediator of retinoic acid and thyroid hormone receptors (SMRT), a broad‐specificity co‐repressor which represses nuclear hormone receptors and CBF1. The sequential loss of class II HDACs and SMRT from the subnuclear domains, followed by nuclear export, is associated with disruption of SMRT interaction with its target transcription factors and sensitization of these factors to their activating signal. Counterbalancing these changes, protein phosphatase 1 promotes nuclear localization of SMRT and inactivation of nuclear receptors and CBF1. Thus, the synaptically controlled kinase‐phosphatase balance of the neuron determines the efficacy of SMRT‐mediated repression and the signal‐responsiveness of a variety of transcription factors.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2005.03010.x</identifier><identifier>PMID: 15773917</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>4-Aminopyridine - pharmacology ; Analytical, structural and metabolic biochemistry ; Aniline Compounds - metabolism ; Animals ; Bicuculline - pharmacology ; Biological and medical sciences ; Calcium - metabolism ; calcium signalling ; Calcium-Calmodulin-Dependent Protein Kinase Type 4 ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; calcium–calmodulin‐dependent protein kinase ; Cell Nucleus - metabolism ; Cell physiology ; Cells, Cultured ; Diagnostic Imaging ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Dose-Response Relationship, Drug ; Drug Interactions ; Enzyme Inhibitors - pharmacology ; Enzymes and enzyme inhibitors ; Fluorescent Antibody Technique - methods ; Fundamental and applied biological sciences. Psychology ; GABA Antagonists - pharmacology ; Gene Expression Regulation - drug effects ; Green Fluorescent Proteins - metabolism ; Hippocampus - cytology ; Histone Deacetylases - metabolism ; Hormones - pharmacology ; Hydroxamic Acids - pharmacology ; Membrane Proteins - metabolism ; mitogen‐activated protein kinases ; Molecular and cellular biology ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Neurotransmission ; nuclear hormone receptors ; Nuclear Receptor Co-Repressor 2 ; Okadaic Acid - pharmacology ; Potassium Channel Blockers - pharmacology ; Protein Synthesis Inhibitors - pharmacology ; Receptors, Notch ; Receptors, Retinoic Acid - metabolism ; Receptors, Thyroid Hormone - metabolism ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Signal Transduction ; SMRT ; Time Factors ; Transcription, Genetic ; Transcriptional Activation ; Transfection - methods ; Transferases ; Tretinoin - pharmacology ; Xanthenes - metabolism</subject><ispartof>Journal of neurochemistry, 2005-04, Vol.93 (1), p.171-185</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1471-4159.2005.03010.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1471-4159.2005.03010.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16626827$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15773917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mckenzie, Grahame J.</creatorcontrib><creatorcontrib>Stevenson, Patrick</creatorcontrib><creatorcontrib>Ward, George</creatorcontrib><creatorcontrib>Papadia, Sofia</creatorcontrib><creatorcontrib>Bading, Hilmar</creatorcontrib><creatorcontrib>Chawla, Sangeeta</creatorcontrib><creatorcontrib>Privalsky, Martin</creatorcontrib><creatorcontrib>Hardingham, Giles E.</creatorcontrib><title>Nuclear Ca2+ and CaM kinase IV specify hormonal‐ and Notch‐responsiveness</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Many neuronal processes require gene activation by synaptically evoked Ca2+ transients. Ca2+‐dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch, transcription factors hitherto not thought to be Ca2+‐responsive. This potentiation is occluded by histone deacetylase inhibition, indicating a mechanism involving inactivation of co‐repressors associated with these transcription factors. Synaptic activity, acting via the nuclear Ca2+‐dependent activation of CaM kinase IV, triggers the disruption of subnuclear domains containing class II histone deacetylases (HDACs) and silencing mediator of retinoic acid and thyroid hormone receptors (SMRT), a broad‐specificity co‐repressor which represses nuclear hormone receptors and CBF1. The sequential loss of class II HDACs and SMRT from the subnuclear domains, followed by nuclear export, is associated with disruption of SMRT interaction with its target transcription factors and sensitization of these factors to their activating signal. Counterbalancing these changes, protein phosphatase 1 promotes nuclear localization of SMRT and inactivation of nuclear receptors and CBF1. Thus, the synaptically controlled kinase‐phosphatase balance of the neuron determines the efficacy of SMRT‐mediated repression and the signal‐responsiveness of a variety of transcription factors.</description><subject>4-Aminopyridine - pharmacology</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Aniline Compounds - metabolism</subject><subject>Animals</subject><subject>Bicuculline - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>calcium signalling</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 4</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>calcium–calmodulin‐dependent protein kinase</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell physiology</subject><subject>Cells, Cultured</subject><subject>Diagnostic Imaging</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Interactions</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Fluorescent Antibody Technique - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABA Antagonists - pharmacology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Histone Deacetylases - metabolism</subject><subject>Hormones - pharmacology</subject><subject>Hydroxamic Acids - pharmacology</subject><subject>Membrane Proteins - metabolism</subject><subject>mitogen‐activated protein kinases</subject><subject>Molecular and cellular biology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurotransmission</subject><subject>nuclear hormone receptors</subject><subject>Nuclear Receptor Co-Repressor 2</subject><subject>Okadaic Acid - pharmacology</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Protein Synthesis Inhibitors - pharmacology</subject><subject>Receptors, Notch</subject><subject>Receptors, Retinoic Acid - metabolism</subject><subject>Receptors, Thyroid Hormone - metabolism</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>SMRT</subject><subject>Time Factors</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Activation</subject><subject>Transfection - methods</subject><subject>Transferases</subject><subject>Tretinoin - pharmacology</subject><subject>Xanthenes - metabolism</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEtOwzAQhi0EoqVwBeQNK5TgR2wnCxYo4lHUlg2wtSaJrSakSRRTaHccgTNyEpK2UG9mRv8na-ZDCFPi0-5dFT4NFPUCKiKfESJ8wkmXrQ7Q8D84RENCGPM4CdgAnThXEEJlIOkxGlChFI-oGqLpbJmWBlocA7vEUGVdM8VveQXO4PErdo1Jc7vG87pd1BWUP1_fG2pWv6fzbmiNa-rK5R-mMs6doiMLpTNnuzpCL3e3z_GDN3m6H8c3E6_gPCIe44HgkcySEKQ13VaWsTTJgEkqVUICEGEYGQuSdwcwYWzAheEmU6BCZangI3S-_bdZJguT6abNF9Cu9d9dHXCxA8ClUNoWqjR3e05KJkPWc9db7jMvzXqfE9171oXudepep-49641nvdKPs7jv-C-4fnBx</recordid><startdate>200504</startdate><enddate>200504</enddate><creator>Mckenzie, Grahame J.</creator><creator>Stevenson, Patrick</creator><creator>Ward, George</creator><creator>Papadia, Sofia</creator><creator>Bading, Hilmar</creator><creator>Chawla, Sangeeta</creator><creator>Privalsky, Martin</creator><creator>Hardingham, Giles E.</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>200504</creationdate><title>Nuclear Ca2+ and CaM kinase IV specify hormonal‐ and Notch‐responsiveness</title><author>Mckenzie, Grahame J. ; Stevenson, Patrick ; Ward, George ; Papadia, Sofia ; Bading, Hilmar ; Chawla, Sangeeta ; Privalsky, Martin ; Hardingham, Giles E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3390-2345396db8a6fe016f22cbda26167b04a5889efa6302225ef435e3ed7a787f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>4-Aminopyridine - pharmacology</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Aniline Compounds - metabolism</topic><topic>Animals</topic><topic>Bicuculline - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>calcium signalling</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 4</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>calcium–calmodulin‐dependent protein kinase</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell physiology</topic><topic>Cells, Cultured</topic><topic>Diagnostic Imaging</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Interactions</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Fluorescent Antibody Technique - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABA Antagonists - pharmacology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Histone Deacetylases - metabolism</topic><topic>Hormones - pharmacology</topic><topic>Hydroxamic Acids - pharmacology</topic><topic>Membrane Proteins - metabolism</topic><topic>mitogen‐activated protein kinases</topic><topic>Molecular and cellular biology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurotransmission</topic><topic>nuclear hormone receptors</topic><topic>Nuclear Receptor Co-Repressor 2</topic><topic>Okadaic Acid - pharmacology</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Protein Synthesis Inhibitors - pharmacology</topic><topic>Receptors, Notch</topic><topic>Receptors, Retinoic Acid - metabolism</topic><topic>Receptors, Thyroid Hormone - metabolism</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>SMRT</topic><topic>Time Factors</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Activation</topic><topic>Transfection - methods</topic><topic>Transferases</topic><topic>Tretinoin - pharmacology</topic><topic>Xanthenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mckenzie, Grahame J.</creatorcontrib><creatorcontrib>Stevenson, Patrick</creatorcontrib><creatorcontrib>Ward, George</creatorcontrib><creatorcontrib>Papadia, Sofia</creatorcontrib><creatorcontrib>Bading, Hilmar</creatorcontrib><creatorcontrib>Chawla, Sangeeta</creatorcontrib><creatorcontrib>Privalsky, Martin</creatorcontrib><creatorcontrib>Hardingham, Giles E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mckenzie, Grahame J.</au><au>Stevenson, Patrick</au><au>Ward, George</au><au>Papadia, Sofia</au><au>Bading, Hilmar</au><au>Chawla, Sangeeta</au><au>Privalsky, Martin</au><au>Hardingham, Giles E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Ca2+ and CaM kinase IV specify hormonal‐ and Notch‐responsiveness</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2005-04</date><risdate>2005</risdate><volume>93</volume><issue>1</issue><spage>171</spage><epage>185</epage><pages>171-185</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Many neuronal processes require gene activation by synaptically evoked Ca2+ transients. Ca2+‐dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch, transcription factors hitherto not thought to be Ca2+‐responsive. This potentiation is occluded by histone deacetylase inhibition, indicating a mechanism involving inactivation of co‐repressors associated with these transcription factors. Synaptic activity, acting via the nuclear Ca2+‐dependent activation of CaM kinase IV, triggers the disruption of subnuclear domains containing class II histone deacetylases (HDACs) and silencing mediator of retinoic acid and thyroid hormone receptors (SMRT), a broad‐specificity co‐repressor which represses nuclear hormone receptors and CBF1. The sequential loss of class II HDACs and SMRT from the subnuclear domains, followed by nuclear export, is associated with disruption of SMRT interaction with its target transcription factors and sensitization of these factors to their activating signal. Counterbalancing these changes, protein phosphatase 1 promotes nuclear localization of SMRT and inactivation of nuclear receptors and CBF1. Thus, the synaptically controlled kinase‐phosphatase balance of the neuron determines the efficacy of SMRT‐mediated repression and the signal‐responsiveness of a variety of transcription factors.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15773917</pmid><doi>10.1111/j.1471-4159.2005.03010.x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2005-04, Vol.93 (1), p.171-185 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_pubmed_primary_15773917 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | 4-Aminopyridine - pharmacology Analytical, structural and metabolic biochemistry Aniline Compounds - metabolism Animals Bicuculline - pharmacology Biological and medical sciences Calcium - metabolism calcium signalling Calcium-Calmodulin-Dependent Protein Kinase Type 4 Calcium-Calmodulin-Dependent Protein Kinases - metabolism calcium–calmodulin‐dependent protein kinase Cell Nucleus - metabolism Cell physiology Cells, Cultured Diagnostic Imaging DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Dose-Response Relationship, Drug Drug Interactions Enzyme Inhibitors - pharmacology Enzymes and enzyme inhibitors Fluorescent Antibody Technique - methods Fundamental and applied biological sciences. Psychology GABA Antagonists - pharmacology Gene Expression Regulation - drug effects Green Fluorescent Proteins - metabolism Hippocampus - cytology Histone Deacetylases - metabolism Hormones - pharmacology Hydroxamic Acids - pharmacology Membrane Proteins - metabolism mitogen‐activated protein kinases Molecular and cellular biology Neurons - cytology Neurons - drug effects Neurons - metabolism Neurotransmission nuclear hormone receptors Nuclear Receptor Co-Repressor 2 Okadaic Acid - pharmacology Potassium Channel Blockers - pharmacology Protein Synthesis Inhibitors - pharmacology Receptors, Notch Receptors, Retinoic Acid - metabolism Receptors, Thyroid Hormone - metabolism Repressor Proteins - genetics Repressor Proteins - metabolism Signal Transduction SMRT Time Factors Transcription, Genetic Transcriptional Activation Transfection - methods Transferases Tretinoin - pharmacology Xanthenes - metabolism |
title | Nuclear Ca2+ and CaM kinase IV specify hormonal‐ and Notch‐responsiveness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Ca2+%20and%20CaM%20kinase%20IV%20specify%20hormonal%E2%80%90%20and%20Notch%E2%80%90responsiveness&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Mckenzie,%20Grahame%20J.&rft.date=2005-04&rft.volume=93&rft.issue=1&rft.spage=171&rft.epage=185&rft.pages=171-185&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2005.03010.x&rft_dat=%3Cwiley_pubme%3EJNC3010%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15773917&rfr_iscdi=true |