Nuclear Ca2+ and CaM kinase IV specify hormonal‐ and Notch‐responsiveness

Many neuronal processes require gene activation by synaptically evoked Ca2+ transients. Ca2+‐dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 2005-04, Vol.93 (1), p.171-185
Hauptverfasser: Mckenzie, Grahame J., Stevenson, Patrick, Ward, George, Papadia, Sofia, Bading, Hilmar, Chawla, Sangeeta, Privalsky, Martin, Hardingham, Giles E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 1
container_start_page 171
container_title Journal of neurochemistry
container_volume 93
creator Mckenzie, Grahame J.
Stevenson, Patrick
Ward, George
Papadia, Sofia
Bading, Hilmar
Chawla, Sangeeta
Privalsky, Martin
Hardingham, Giles E.
description Many neuronal processes require gene activation by synaptically evoked Ca2+ transients. Ca2+‐dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch, transcription factors hitherto not thought to be Ca2+‐responsive. This potentiation is occluded by histone deacetylase inhibition, indicating a mechanism involving inactivation of co‐repressors associated with these transcription factors. Synaptic activity, acting via the nuclear Ca2+‐dependent activation of CaM kinase IV, triggers the disruption of subnuclear domains containing class II histone deacetylases (HDACs) and silencing mediator of retinoic acid and thyroid hormone receptors (SMRT), a broad‐specificity co‐repressor which represses nuclear hormone receptors and CBF1. The sequential loss of class II HDACs and SMRT from the subnuclear domains, followed by nuclear export, is associated with disruption of SMRT interaction with its target transcription factors and sensitization of these factors to their activating signal. Counterbalancing these changes, protein phosphatase 1 promotes nuclear localization of SMRT and inactivation of nuclear receptors and CBF1. Thus, the synaptically controlled kinase‐phosphatase balance of the neuron determines the efficacy of SMRT‐mediated repression and the signal‐responsiveness of a variety of transcription factors.
doi_str_mv 10.1111/j.1471-4159.2005.03010.x
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmed_primary_15773917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>JNC3010</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3390-2345396db8a6fe016f22cbda26167b04a5889efa6302225ef435e3ed7a787f153</originalsourceid><addsrcrecordid>eNpFkEtOwzAQhi0EoqVwBeQNK5TgR2wnCxYo4lHUlg2wtSaJrSakSRRTaHccgTNyEpK2UG9mRv8na-ZDCFPi0-5dFT4NFPUCKiKfESJ8wkmXrQ7Q8D84RENCGPM4CdgAnThXEEJlIOkxGlChFI-oGqLpbJmWBlocA7vEUGVdM8VveQXO4PErdo1Jc7vG87pd1BWUP1_fG2pWv6fzbmiNa-rK5R-mMs6doiMLpTNnuzpCL3e3z_GDN3m6H8c3E6_gPCIe44HgkcySEKQ13VaWsTTJgEkqVUICEGEYGQuSdwcwYWzAheEmU6BCZangI3S-_bdZJguT6abNF9Cu9d9dHXCxA8ClUNoWqjR3e05KJkPWc9db7jMvzXqfE9171oXudepep-49641nvdKPs7jv-C-4fnBx</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nuclear Ca2+ and CaM kinase IV specify hormonal‐ and Notch‐responsiveness</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Mckenzie, Grahame J. ; Stevenson, Patrick ; Ward, George ; Papadia, Sofia ; Bading, Hilmar ; Chawla, Sangeeta ; Privalsky, Martin ; Hardingham, Giles E.</creator><creatorcontrib>Mckenzie, Grahame J. ; Stevenson, Patrick ; Ward, George ; Papadia, Sofia ; Bading, Hilmar ; Chawla, Sangeeta ; Privalsky, Martin ; Hardingham, Giles E.</creatorcontrib><description>Many neuronal processes require gene activation by synaptically evoked Ca2+ transients. Ca2+‐dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch, transcription factors hitherto not thought to be Ca2+‐responsive. This potentiation is occluded by histone deacetylase inhibition, indicating a mechanism involving inactivation of co‐repressors associated with these transcription factors. Synaptic activity, acting via the nuclear Ca2+‐dependent activation of CaM kinase IV, triggers the disruption of subnuclear domains containing class II histone deacetylases (HDACs) and silencing mediator of retinoic acid and thyroid hormone receptors (SMRT), a broad‐specificity co‐repressor which represses nuclear hormone receptors and CBF1. The sequential loss of class II HDACs and SMRT from the subnuclear domains, followed by nuclear export, is associated with disruption of SMRT interaction with its target transcription factors and sensitization of these factors to their activating signal. Counterbalancing these changes, protein phosphatase 1 promotes nuclear localization of SMRT and inactivation of nuclear receptors and CBF1. Thus, the synaptically controlled kinase‐phosphatase balance of the neuron determines the efficacy of SMRT‐mediated repression and the signal‐responsiveness of a variety of transcription factors.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1111/j.1471-4159.2005.03010.x</identifier><identifier>PMID: 15773917</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>4-Aminopyridine - pharmacology ; Analytical, structural and metabolic biochemistry ; Aniline Compounds - metabolism ; Animals ; Bicuculline - pharmacology ; Biological and medical sciences ; Calcium - metabolism ; calcium signalling ; Calcium-Calmodulin-Dependent Protein Kinase Type 4 ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; calcium–calmodulin‐dependent protein kinase ; Cell Nucleus - metabolism ; Cell physiology ; Cells, Cultured ; Diagnostic Imaging ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Dose-Response Relationship, Drug ; Drug Interactions ; Enzyme Inhibitors - pharmacology ; Enzymes and enzyme inhibitors ; Fluorescent Antibody Technique - methods ; Fundamental and applied biological sciences. Psychology ; GABA Antagonists - pharmacology ; Gene Expression Regulation - drug effects ; Green Fluorescent Proteins - metabolism ; Hippocampus - cytology ; Histone Deacetylases - metabolism ; Hormones - pharmacology ; Hydroxamic Acids - pharmacology ; Membrane Proteins - metabolism ; mitogen‐activated protein kinases ; Molecular and cellular biology ; Neurons - cytology ; Neurons - drug effects ; Neurons - metabolism ; Neurotransmission ; nuclear hormone receptors ; Nuclear Receptor Co-Repressor 2 ; Okadaic Acid - pharmacology ; Potassium Channel Blockers - pharmacology ; Protein Synthesis Inhibitors - pharmacology ; Receptors, Notch ; Receptors, Retinoic Acid - metabolism ; Receptors, Thyroid Hormone - metabolism ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Signal Transduction ; SMRT ; Time Factors ; Transcription, Genetic ; Transcriptional Activation ; Transfection - methods ; Transferases ; Tretinoin - pharmacology ; Xanthenes - metabolism</subject><ispartof>Journal of neurochemistry, 2005-04, Vol.93 (1), p.171-185</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1471-4159.2005.03010.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1471-4159.2005.03010.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16626827$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15773917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mckenzie, Grahame J.</creatorcontrib><creatorcontrib>Stevenson, Patrick</creatorcontrib><creatorcontrib>Ward, George</creatorcontrib><creatorcontrib>Papadia, Sofia</creatorcontrib><creatorcontrib>Bading, Hilmar</creatorcontrib><creatorcontrib>Chawla, Sangeeta</creatorcontrib><creatorcontrib>Privalsky, Martin</creatorcontrib><creatorcontrib>Hardingham, Giles E.</creatorcontrib><title>Nuclear Ca2+ and CaM kinase IV specify hormonal‐ and Notch‐responsiveness</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Many neuronal processes require gene activation by synaptically evoked Ca2+ transients. Ca2+‐dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch, transcription factors hitherto not thought to be Ca2+‐responsive. This potentiation is occluded by histone deacetylase inhibition, indicating a mechanism involving inactivation of co‐repressors associated with these transcription factors. Synaptic activity, acting via the nuclear Ca2+‐dependent activation of CaM kinase IV, triggers the disruption of subnuclear domains containing class II histone deacetylases (HDACs) and silencing mediator of retinoic acid and thyroid hormone receptors (SMRT), a broad‐specificity co‐repressor which represses nuclear hormone receptors and CBF1. The sequential loss of class II HDACs and SMRT from the subnuclear domains, followed by nuclear export, is associated with disruption of SMRT interaction with its target transcription factors and sensitization of these factors to their activating signal. Counterbalancing these changes, protein phosphatase 1 promotes nuclear localization of SMRT and inactivation of nuclear receptors and CBF1. Thus, the synaptically controlled kinase‐phosphatase balance of the neuron determines the efficacy of SMRT‐mediated repression and the signal‐responsiveness of a variety of transcription factors.</description><subject>4-Aminopyridine - pharmacology</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Aniline Compounds - metabolism</subject><subject>Animals</subject><subject>Bicuculline - pharmacology</subject><subject>Biological and medical sciences</subject><subject>Calcium - metabolism</subject><subject>calcium signalling</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 4</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>calcium–calmodulin‐dependent protein kinase</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell physiology</subject><subject>Cells, Cultured</subject><subject>Diagnostic Imaging</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Interactions</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Fluorescent Antibody Technique - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GABA Antagonists - pharmacology</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Hippocampus - cytology</subject><subject>Histone Deacetylases - metabolism</subject><subject>Hormones - pharmacology</subject><subject>Hydroxamic Acids - pharmacology</subject><subject>Membrane Proteins - metabolism</subject><subject>mitogen‐activated protein kinases</subject><subject>Molecular and cellular biology</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - metabolism</subject><subject>Neurotransmission</subject><subject>nuclear hormone receptors</subject><subject>Nuclear Receptor Co-Repressor 2</subject><subject>Okadaic Acid - pharmacology</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Protein Synthesis Inhibitors - pharmacology</subject><subject>Receptors, Notch</subject><subject>Receptors, Retinoic Acid - metabolism</subject><subject>Receptors, Thyroid Hormone - metabolism</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>SMRT</subject><subject>Time Factors</subject><subject>Transcription, Genetic</subject><subject>Transcriptional Activation</subject><subject>Transfection - methods</subject><subject>Transferases</subject><subject>Tretinoin - pharmacology</subject><subject>Xanthenes - metabolism</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEtOwzAQhi0EoqVwBeQNK5TgR2wnCxYo4lHUlg2wtSaJrSakSRRTaHccgTNyEpK2UG9mRv8na-ZDCFPi0-5dFT4NFPUCKiKfESJ8wkmXrQ7Q8D84RENCGPM4CdgAnThXEEJlIOkxGlChFI-oGqLpbJmWBlocA7vEUGVdM8VveQXO4PErdo1Jc7vG87pd1BWUP1_fG2pWv6fzbmiNa-rK5R-mMs6doiMLpTNnuzpCL3e3z_GDN3m6H8c3E6_gPCIe44HgkcySEKQ13VaWsTTJgEkqVUICEGEYGQuSdwcwYWzAheEmU6BCZangI3S-_bdZJguT6abNF9Cu9d9dHXCxA8ClUNoWqjR3e05KJkPWc9db7jMvzXqfE9171oXudepep-49641nvdKPs7jv-C-4fnBx</recordid><startdate>200504</startdate><enddate>200504</enddate><creator>Mckenzie, Grahame J.</creator><creator>Stevenson, Patrick</creator><creator>Ward, George</creator><creator>Papadia, Sofia</creator><creator>Bading, Hilmar</creator><creator>Chawla, Sangeeta</creator><creator>Privalsky, Martin</creator><creator>Hardingham, Giles E.</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>200504</creationdate><title>Nuclear Ca2+ and CaM kinase IV specify hormonal‐ and Notch‐responsiveness</title><author>Mckenzie, Grahame J. ; Stevenson, Patrick ; Ward, George ; Papadia, Sofia ; Bading, Hilmar ; Chawla, Sangeeta ; Privalsky, Martin ; Hardingham, Giles E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3390-2345396db8a6fe016f22cbda26167b04a5889efa6302225ef435e3ed7a787f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>4-Aminopyridine - pharmacology</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Aniline Compounds - metabolism</topic><topic>Animals</topic><topic>Bicuculline - pharmacology</topic><topic>Biological and medical sciences</topic><topic>Calcium - metabolism</topic><topic>calcium signalling</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 4</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>calcium–calmodulin‐dependent protein kinase</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell physiology</topic><topic>Cells, Cultured</topic><topic>Diagnostic Imaging</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Interactions</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Fluorescent Antibody Technique - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GABA Antagonists - pharmacology</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Hippocampus - cytology</topic><topic>Histone Deacetylases - metabolism</topic><topic>Hormones - pharmacology</topic><topic>Hydroxamic Acids - pharmacology</topic><topic>Membrane Proteins - metabolism</topic><topic>mitogen‐activated protein kinases</topic><topic>Molecular and cellular biology</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - metabolism</topic><topic>Neurotransmission</topic><topic>nuclear hormone receptors</topic><topic>Nuclear Receptor Co-Repressor 2</topic><topic>Okadaic Acid - pharmacology</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Protein Synthesis Inhibitors - pharmacology</topic><topic>Receptors, Notch</topic><topic>Receptors, Retinoic Acid - metabolism</topic><topic>Receptors, Thyroid Hormone - metabolism</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>SMRT</topic><topic>Time Factors</topic><topic>Transcription, Genetic</topic><topic>Transcriptional Activation</topic><topic>Transfection - methods</topic><topic>Transferases</topic><topic>Tretinoin - pharmacology</topic><topic>Xanthenes - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mckenzie, Grahame J.</creatorcontrib><creatorcontrib>Stevenson, Patrick</creatorcontrib><creatorcontrib>Ward, George</creatorcontrib><creatorcontrib>Papadia, Sofia</creatorcontrib><creatorcontrib>Bading, Hilmar</creatorcontrib><creatorcontrib>Chawla, Sangeeta</creatorcontrib><creatorcontrib>Privalsky, Martin</creatorcontrib><creatorcontrib>Hardingham, Giles E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mckenzie, Grahame J.</au><au>Stevenson, Patrick</au><au>Ward, George</au><au>Papadia, Sofia</au><au>Bading, Hilmar</au><au>Chawla, Sangeeta</au><au>Privalsky, Martin</au><au>Hardingham, Giles E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear Ca2+ and CaM kinase IV specify hormonal‐ and Notch‐responsiveness</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2005-04</date><risdate>2005</risdate><volume>93</volume><issue>1</issue><spage>171</spage><epage>185</epage><pages>171-185</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Many neuronal processes require gene activation by synaptically evoked Ca2+ transients. Ca2+‐dependent signal pathways activate some transcription factors outright, but here we report that such signals also potentiate the activation of nuclear receptors by their cognate hormone, and of CBF1 by Notch, transcription factors hitherto not thought to be Ca2+‐responsive. This potentiation is occluded by histone deacetylase inhibition, indicating a mechanism involving inactivation of co‐repressors associated with these transcription factors. Synaptic activity, acting via the nuclear Ca2+‐dependent activation of CaM kinase IV, triggers the disruption of subnuclear domains containing class II histone deacetylases (HDACs) and silencing mediator of retinoic acid and thyroid hormone receptors (SMRT), a broad‐specificity co‐repressor which represses nuclear hormone receptors and CBF1. The sequential loss of class II HDACs and SMRT from the subnuclear domains, followed by nuclear export, is associated with disruption of SMRT interaction with its target transcription factors and sensitization of these factors to their activating signal. Counterbalancing these changes, protein phosphatase 1 promotes nuclear localization of SMRT and inactivation of nuclear receptors and CBF1. Thus, the synaptically controlled kinase‐phosphatase balance of the neuron determines the efficacy of SMRT‐mediated repression and the signal‐responsiveness of a variety of transcription factors.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>15773917</pmid><doi>10.1111/j.1471-4159.2005.03010.x</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 2005-04, Vol.93 (1), p.171-185
issn 0022-3042
1471-4159
language eng
recordid cdi_pubmed_primary_15773917
source Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects 4-Aminopyridine - pharmacology
Analytical, structural and metabolic biochemistry
Aniline Compounds - metabolism
Animals
Bicuculline - pharmacology
Biological and medical sciences
Calcium - metabolism
calcium signalling
Calcium-Calmodulin-Dependent Protein Kinase Type 4
Calcium-Calmodulin-Dependent Protein Kinases - metabolism
calcium–calmodulin‐dependent protein kinase
Cell Nucleus - metabolism
Cell physiology
Cells, Cultured
Diagnostic Imaging
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Dose-Response Relationship, Drug
Drug Interactions
Enzyme Inhibitors - pharmacology
Enzymes and enzyme inhibitors
Fluorescent Antibody Technique - methods
Fundamental and applied biological sciences. Psychology
GABA Antagonists - pharmacology
Gene Expression Regulation - drug effects
Green Fluorescent Proteins - metabolism
Hippocampus - cytology
Histone Deacetylases - metabolism
Hormones - pharmacology
Hydroxamic Acids - pharmacology
Membrane Proteins - metabolism
mitogen‐activated protein kinases
Molecular and cellular biology
Neurons - cytology
Neurons - drug effects
Neurons - metabolism
Neurotransmission
nuclear hormone receptors
Nuclear Receptor Co-Repressor 2
Okadaic Acid - pharmacology
Potassium Channel Blockers - pharmacology
Protein Synthesis Inhibitors - pharmacology
Receptors, Notch
Receptors, Retinoic Acid - metabolism
Receptors, Thyroid Hormone - metabolism
Repressor Proteins - genetics
Repressor Proteins - metabolism
Signal Transduction
SMRT
Time Factors
Transcription, Genetic
Transcriptional Activation
Transfection - methods
Transferases
Tretinoin - pharmacology
Xanthenes - metabolism
title Nuclear Ca2+ and CaM kinase IV specify hormonal‐ and Notch‐responsiveness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20Ca2+%20and%20CaM%20kinase%20IV%20specify%20hormonal%E2%80%90%20and%20Notch%E2%80%90responsiveness&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Mckenzie,%20Grahame%20J.&rft.date=2005-04&rft.volume=93&rft.issue=1&rft.spage=171&rft.epage=185&rft.pages=171-185&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1111/j.1471-4159.2005.03010.x&rft_dat=%3Cwiley_pubme%3EJNC3010%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15773917&rfr_iscdi=true