Discriminative common vectors for face recognition

In face recognition tasks, the dimension of the sample space is typically larger than the number of the samples in the training set. As a consequence, the within-class scatter matrix is singular and the linear discriminant analysis (LDA) method cannot be applied directly. This problem is known as th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2005-01, Vol.27 (1), p.4-13
Hauptverfasser: Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 4
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 27
creator Cevikalp, H.
Neamtu, M.
Wilkes, M.
Barkana, A.
description In face recognition tasks, the dimension of the sample space is typically larger than the number of the samples in the training set. As a consequence, the within-class scatter matrix is singular and the linear discriminant analysis (LDA) method cannot be applied directly. This problem is known as the "small sample size" problem. In this paper, we propose a new face recognition method called the discriminative common vector method based on a variation of Fisher's linear discriminant analysis for the small sample size case. Two different algorithms are given to extract the discriminative common vectors representing each person in the training set of the face database. One algorithm uses the within-class scatter matrix of the samples in the training set while the other uses the subspace methods and the Gram-Schmidt orthogonalization procedure to obtain the discriminative common vectors. Then, the discriminative common vectors are used for classification of new faces. The proposed method yields an optimal solution for maximizing the modified Fisher's linear discriminant criterion given in the paper. Our test results show that the discriminative common vector method is superior to other methods in terms of recognition accuracy, efficiency, and numerical stability.
doi_str_mv 10.1109/TPAMI.2005.9
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_15628264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1359747</ieee_id><sourcerecordid>896233877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c495t-70138172574efe472f46b78bbc2d98ac9a292f8c178cbc4524bddcf2c30d96793</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAgipvTmzdBiqBe7MxX83Ec82sw0cM8hzRNpGNtZtIN_O9tt8HAg55yeH88vG8eAM4RHCIE5f3sffQ6GWIIs6E8AH0kiUxJRuQh6EPEcCoEFj1wEuMcQkQzSI5BD2UMC8xoH-CHMppQVmWtm3JtE-OrytfJ2prGh5g4HxKnjU2CNf6zLpvS16fgyOlFtGe7dwA-nh5n45d0-vY8GY-mqaEya1IOERGI44xT6yzl2FGWc5HnBhdSaCM1ltgJg7gwuaEZpnlRGIcNgYVkXJIBuN3mLoP_WtnYqKrd1S4WurZ-FZWQDBMiOG_lzZ-ScUKIpOhfiAWEAm4Sr37BuV-Fuj1XCcYZby_s0u62yAQfY7BOLduf1OFbIai6btSmG9V1o7p7LneZq7yyxR7vymjB9Q7oaPTCBV2bMu4do1RI2i13sXWltXY_Jpnk7fQHOJadcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867674951</pqid></control><display><type>article</type><title>Discriminative common vectors for face recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Cevikalp, H. ; Neamtu, M. ; Wilkes, M. ; Barkana, A.</creator><creatorcontrib>Cevikalp, H. ; Neamtu, M. ; Wilkes, M. ; Barkana, A.</creatorcontrib><description>In face recognition tasks, the dimension of the sample space is typically larger than the number of the samples in the training set. As a consequence, the within-class scatter matrix is singular and the linear discriminant analysis (LDA) method cannot be applied directly. This problem is known as the "small sample size" problem. In this paper, we propose a new face recognition method called the discriminative common vector method based on a variation of Fisher's linear discriminant analysis for the small sample size case. Two different algorithms are given to extract the discriminative common vectors representing each person in the training set of the face database. One algorithm uses the within-class scatter matrix of the samples in the training set while the other uses the subspace methods and the Gram-Schmidt orthogonalization procedure to obtain the discriminative common vectors. Then, the discriminative common vectors are used for classification of new faces. The proposed method yields an optimal solution for maximizing the modified Fisher's linear discriminant criterion given in the paper. Our test results show that the discriminative common vector method is superior to other methods in terms of recognition accuracy, efficiency, and numerical stability.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2005.9</identifier><identifier>PMID: 15628264</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Application software ; Applied sciences ; Artificial Intelligence ; Computer science; control theory; systems ; Discriminant Analysis ; discriminative common vectors ; Exact sciences and technology ; Face - anatomy &amp; histology ; Face detection ; Face recognition ; Fisher's linear discriminant analysis ; History, Ancient ; Humans ; Image Interpretation, Computer-Assisted ; Image recognition ; Index Terms- Common vectors ; Light scattering ; Linear discriminant analysis ; Mathematical analysis ; Mathematical models ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; Photography - methods ; Principal Component Analysis ; Sample Size ; Signal Processing, Computer-Assisted ; small sample size ; Studies ; subspace methods ; Testing ; Training ; Vectors ; Vectors (mathematics)</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2005-01, Vol.27 (1), p.4-13</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c495t-70138172574efe472f46b78bbc2d98ac9a292f8c178cbc4524bddcf2c30d96793</citedby><cites>FETCH-LOGICAL-c495t-70138172574efe472f46b78bbc2d98ac9a292f8c178cbc4524bddcf2c30d96793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1359747$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1359747$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16448947$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15628264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cevikalp, H.</creatorcontrib><creatorcontrib>Neamtu, M.</creatorcontrib><creatorcontrib>Wilkes, M.</creatorcontrib><creatorcontrib>Barkana, A.</creatorcontrib><title>Discriminative common vectors for face recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>In face recognition tasks, the dimension of the sample space is typically larger than the number of the samples in the training set. As a consequence, the within-class scatter matrix is singular and the linear discriminant analysis (LDA) method cannot be applied directly. This problem is known as the "small sample size" problem. In this paper, we propose a new face recognition method called the discriminative common vector method based on a variation of Fisher's linear discriminant analysis for the small sample size case. Two different algorithms are given to extract the discriminative common vectors representing each person in the training set of the face database. One algorithm uses the within-class scatter matrix of the samples in the training set while the other uses the subspace methods and the Gram-Schmidt orthogonalization procedure to obtain the discriminative common vectors. Then, the discriminative common vectors are used for classification of new faces. The proposed method yields an optimal solution for maximizing the modified Fisher's linear discriminant criterion given in the paper. Our test results show that the discriminative common vector method is superior to other methods in terms of recognition accuracy, efficiency, and numerical stability.</description><subject>Algorithms</subject><subject>Application software</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Discriminant Analysis</subject><subject>discriminative common vectors</subject><subject>Exact sciences and technology</subject><subject>Face - anatomy &amp; histology</subject><subject>Face detection</subject><subject>Face recognition</subject><subject>Fisher's linear discriminant analysis</subject><subject>History, Ancient</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Image recognition</subject><subject>Index Terms- Common vectors</subject><subject>Light scattering</subject><subject>Linear discriminant analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Photography - methods</subject><subject>Principal Component Analysis</subject><subject>Sample Size</subject><subject>Signal Processing, Computer-Assisted</subject><subject>small sample size</subject><subject>Studies</subject><subject>subspace methods</subject><subject>Testing</subject><subject>Training</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c1LwzAYBvAgipvTmzdBiqBe7MxX83Ec82sw0cM8hzRNpGNtZtIN_O9tt8HAg55yeH88vG8eAM4RHCIE5f3sffQ6GWIIs6E8AH0kiUxJRuQh6EPEcCoEFj1wEuMcQkQzSI5BD2UMC8xoH-CHMppQVmWtm3JtE-OrytfJ2prGh5g4HxKnjU2CNf6zLpvS16fgyOlFtGe7dwA-nh5n45d0-vY8GY-mqaEya1IOERGI44xT6yzl2FGWc5HnBhdSaCM1ltgJg7gwuaEZpnlRGIcNgYVkXJIBuN3mLoP_WtnYqKrd1S4WurZ-FZWQDBMiOG_lzZ-ScUKIpOhfiAWEAm4Sr37BuV-Fuj1XCcYZby_s0u62yAQfY7BOLduf1OFbIai6btSmG9V1o7p7LneZq7yyxR7vymjB9Q7oaPTCBV2bMu4do1RI2i13sXWltXY_Jpnk7fQHOJadcA</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Cevikalp, H.</creator><creator>Neamtu, M.</creator><creator>Wilkes, M.</creator><creator>Barkana, A.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200501</creationdate><title>Discriminative common vectors for face recognition</title><author>Cevikalp, H. ; Neamtu, M. ; Wilkes, M. ; Barkana, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c495t-70138172574efe472f46b78bbc2d98ac9a292f8c178cbc4524bddcf2c30d96793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Application software</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Discriminant Analysis</topic><topic>discriminative common vectors</topic><topic>Exact sciences and technology</topic><topic>Face - anatomy &amp; histology</topic><topic>Face detection</topic><topic>Face recognition</topic><topic>Fisher's linear discriminant analysis</topic><topic>History, Ancient</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Image recognition</topic><topic>Index Terms- Common vectors</topic><topic>Light scattering</topic><topic>Linear discriminant analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Photography - methods</topic><topic>Principal Component Analysis</topic><topic>Sample Size</topic><topic>Signal Processing, Computer-Assisted</topic><topic>small sample size</topic><topic>Studies</topic><topic>subspace methods</topic><topic>Testing</topic><topic>Training</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cevikalp, H.</creatorcontrib><creatorcontrib>Neamtu, M.</creatorcontrib><creatorcontrib>Wilkes, M.</creatorcontrib><creatorcontrib>Barkana, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cevikalp, H.</au><au>Neamtu, M.</au><au>Wilkes, M.</au><au>Barkana, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discriminative common vectors for face recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2005-01</date><risdate>2005</risdate><volume>27</volume><issue>1</issue><spage>4</spage><epage>13</epage><pages>4-13</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>In face recognition tasks, the dimension of the sample space is typically larger than the number of the samples in the training set. As a consequence, the within-class scatter matrix is singular and the linear discriminant analysis (LDA) method cannot be applied directly. This problem is known as the "small sample size" problem. In this paper, we propose a new face recognition method called the discriminative common vector method based on a variation of Fisher's linear discriminant analysis for the small sample size case. Two different algorithms are given to extract the discriminative common vectors representing each person in the training set of the face database. One algorithm uses the within-class scatter matrix of the samples in the training set while the other uses the subspace methods and the Gram-Schmidt orthogonalization procedure to obtain the discriminative common vectors. Then, the discriminative common vectors are used for classification of new faces. The proposed method yields an optimal solution for maximizing the modified Fisher's linear discriminant criterion given in the paper. Our test results show that the discriminative common vector method is superior to other methods in terms of recognition accuracy, efficiency, and numerical stability.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>15628264</pmid><doi>10.1109/TPAMI.2005.9</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2005-01, Vol.27 (1), p.4-13
issn 0162-8828
1939-3539
language eng
recordid cdi_pubmed_primary_15628264
source IEEE Electronic Library (IEL)
subjects Algorithms
Application software
Applied sciences
Artificial Intelligence
Computer science
control theory
systems
Discriminant Analysis
discriminative common vectors
Exact sciences and technology
Face - anatomy & histology
Face detection
Face recognition
Fisher's linear discriminant analysis
History, Ancient
Humans
Image Interpretation, Computer-Assisted
Image recognition
Index Terms- Common vectors
Light scattering
Linear discriminant analysis
Mathematical analysis
Mathematical models
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Photography - methods
Principal Component Analysis
Sample Size
Signal Processing, Computer-Assisted
small sample size
Studies
subspace methods
Testing
Training
Vectors
Vectors (mathematics)
title Discriminative common vectors for face recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discriminative%20common%20vectors%20for%20face%20recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Cevikalp,%20H.&rft.date=2005-01&rft.volume=27&rft.issue=1&rft.spage=4&rft.epage=13&rft.pages=4-13&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2005.9&rft_dat=%3Cproquest_RIE%3E896233877%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867674951&rft_id=info:pmid/15628264&rft_ieee_id=1359747&rfr_iscdi=true