Embedded image compression based on wavelet pixel classification and sorting

The method of modeling and ordering in wavelet domain is very important to design a successful algorithm of embedded image compression. In this paper, the modeling is limited to "pixel classification," the relationship between wavelet pixels in significance coding. Similarly, the ordering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2004-08, Vol.13 (8), p.1011-1017
Hauptverfasser: Kewu Peng, Kieffer, J.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1017
container_issue 8
container_start_page 1011
container_title IEEE transactions on image processing
container_volume 13
creator Kewu Peng
Kieffer, J.C.
description The method of modeling and ordering in wavelet domain is very important to design a successful algorithm of embedded image compression. In this paper, the modeling is limited to "pixel classification," the relationship between wavelet pixels in significance coding. Similarly, the ordering is limited to "pixel sorting," the coding order of wavelet pixels. We use pixel classification and sorting to provide a better understanding of previous works. The image pixels in wavelet domain are classified and sorted, either explicitly or implicitly, for embedded image compression. A new embedded image code is proposed based on a novel pixel classification and sorting (PCAS) scheme in wavelet domain. In PCAS, pixels to be coded are classified into several quantized contexts based on a large context template and sorted based on their estimated significance probabilities. The purpose of pixel classification is to exploit the intraband correlation in wavelet domain. Pixel sorting employs several fractional bit-plane coding passes to improve the rate-distortion performance. The proposed pixel classification and sorting technique is simple, yet effective, producing an embedded image code with excellent compression performance. In addition, our algorithm is able to provide either spatial or quality scalability with flexible complexity.
doi_str_mv 10.1109/TIP.2004.828441
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_15326843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1315690</ieee_id><sourcerecordid>28378195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-2474da3e3ffbed95f6720f89168d312c117140845ade43b1e9393d058414845a3</originalsourceid><addsrcrecordid>eNqFkc9rFTEQx4NYbK2ePQiyCJVe9jWzM9lNjlKqFh7UQz2HvGS2bNkfz2Rf1f--Wd6Digd7yvCdT74zyVeIdyBXANJc3F5_X1VS0kpXmgheiBMwBGVWqpe5lqopGyBzLF6ndC8lkIL6lTgGhVWtCU_E-mrYcAgcim5wd1z4adhGTqmbxmLjUtZz8cs9cM9zse1-c1_43uV-23k3L5QbQ5GmOHfj3Rtx1Lo-8dvDeSp-fLm6vfxWrm--Xl9-XpeekOayooaCQ8a2zbONauumkq02UOuAUHmAvLPUpFxgwg2wQYNBKk1Ai4qn4tPedxunnztOsx265Lnv3cjTLtm61gCmgWfBSmOjwagMnv8XhHpZqdG4eH78B72fdnHM77Vao0JtkDJ0sYd8nFKK3NptzB8c_1iQdknO5uTskpzdJ5dvfDjY7jYDhyf-EFUGzg6AS971bXSj79JfnCFDahn9fs91zPzURlC1kfgIav-m8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883538934</pqid></control><display><type>article</type><title>Embedded image compression based on wavelet pixel classification and sorting</title><source>IEEE Electronic Library (IEL)</source><creator>Kewu Peng ; Kieffer, J.C.</creator><creatorcontrib>Kewu Peng ; Kieffer, J.C.</creatorcontrib><description>The method of modeling and ordering in wavelet domain is very important to design a successful algorithm of embedded image compression. In this paper, the modeling is limited to "pixel classification," the relationship between wavelet pixels in significance coding. Similarly, the ordering is limited to "pixel sorting," the coding order of wavelet pixels. We use pixel classification and sorting to provide a better understanding of previous works. The image pixels in wavelet domain are classified and sorted, either explicitly or implicitly, for embedded image compression. A new embedded image code is proposed based on a novel pixel classification and sorting (PCAS) scheme in wavelet domain. In PCAS, pixels to be coded are classified into several quantized contexts based on a large context template and sorted based on their estimated significance probabilities. The purpose of pixel classification is to exploit the intraband correlation in wavelet domain. Pixel sorting employs several fractional bit-plane coding passes to improve the rate-distortion performance. The proposed pixel classification and sorting technique is simple, yet effective, producing an embedded image code with excellent compression performance. In addition, our algorithm is able to provide either spatial or quality scalability with flexible complexity.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2004.828441</identifier><identifier>PMID: 15326843</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Applied sciences ; Artificial intelligence ; Classification ; Coding ; Computer science; control theory; systems ; Data Compression - methods ; Discrete wavelet transforms ; Exact sciences and technology ; Image coding ; Image compression ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Information, signal and communications theory ; Partitioning algorithms ; Pattern Recognition, Automated ; Pattern recognition. Digital image processing. Computational geometry ; Pixel ; Pixels ; Principal component analysis ; Reproducibility of Results ; Scalability ; Sensitivity and Specificity ; Signal processing ; Signal Processing, Computer-Assisted ; Sorting ; Streaming media ; Telecommunications and information theory ; Wavelet ; Wavelet domain</subject><ispartof>IEEE transactions on image processing, 2004-08, Vol.13 (8), p.1011-1017</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-2474da3e3ffbed95f6720f89168d312c117140845ade43b1e9393d058414845a3</citedby><cites>FETCH-LOGICAL-c434t-2474da3e3ffbed95f6720f89168d312c117140845ade43b1e9393d058414845a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1315690$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1315690$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15949454$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15326843$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kewu Peng</creatorcontrib><creatorcontrib>Kieffer, J.C.</creatorcontrib><title>Embedded image compression based on wavelet pixel classification and sorting</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>The method of modeling and ordering in wavelet domain is very important to design a successful algorithm of embedded image compression. In this paper, the modeling is limited to "pixel classification," the relationship between wavelet pixels in significance coding. Similarly, the ordering is limited to "pixel sorting," the coding order of wavelet pixels. We use pixel classification and sorting to provide a better understanding of previous works. The image pixels in wavelet domain are classified and sorted, either explicitly or implicitly, for embedded image compression. A new embedded image code is proposed based on a novel pixel classification and sorting (PCAS) scheme in wavelet domain. In PCAS, pixels to be coded are classified into several quantized contexts based on a large context template and sorted based on their estimated significance probabilities. The purpose of pixel classification is to exploit the intraband correlation in wavelet domain. Pixel sorting employs several fractional bit-plane coding passes to improve the rate-distortion performance. The proposed pixel classification and sorting technique is simple, yet effective, producing an embedded image code with excellent compression performance. In addition, our algorithm is able to provide either spatial or quality scalability with flexible complexity.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Coding</subject><subject>Computer science; control theory; systems</subject><subject>Data Compression - methods</subject><subject>Discrete wavelet transforms</subject><subject>Exact sciences and technology</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Partitioning algorithms</subject><subject>Pattern Recognition, Automated</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Pixel</subject><subject>Pixels</subject><subject>Principal component analysis</subject><subject>Reproducibility of Results</subject><subject>Scalability</subject><subject>Sensitivity and Specificity</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Sorting</subject><subject>Streaming media</subject><subject>Telecommunications and information theory</subject><subject>Wavelet</subject><subject>Wavelet domain</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9rFTEQx4NYbK2ePQiyCJVe9jWzM9lNjlKqFh7UQz2HvGS2bNkfz2Rf1f--Wd6Digd7yvCdT74zyVeIdyBXANJc3F5_X1VS0kpXmgheiBMwBGVWqpe5lqopGyBzLF6ndC8lkIL6lTgGhVWtCU_E-mrYcAgcim5wd1z4adhGTqmbxmLjUtZz8cs9cM9zse1-c1_43uV-23k3L5QbQ5GmOHfj3Rtx1Lo-8dvDeSp-fLm6vfxWrm--Xl9-XpeekOayooaCQ8a2zbONauumkq02UOuAUHmAvLPUpFxgwg2wQYNBKk1Ai4qn4tPedxunnztOsx265Lnv3cjTLtm61gCmgWfBSmOjwagMnv8XhHpZqdG4eH78B72fdnHM77Vao0JtkDJ0sYd8nFKK3NptzB8c_1iQdknO5uTskpzdJ5dvfDjY7jYDhyf-EFUGzg6AS971bXSj79JfnCFDahn9fs91zPzURlC1kfgIav-m8w</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Kewu Peng</creator><creator>Kieffer, J.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>Embedded image compression based on wavelet pixel classification and sorting</title><author>Kewu Peng ; Kieffer, J.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-2474da3e3ffbed95f6720f89168d312c117140845ade43b1e9393d058414845a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Coding</topic><topic>Computer science; control theory; systems</topic><topic>Data Compression - methods</topic><topic>Discrete wavelet transforms</topic><topic>Exact sciences and technology</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Partitioning algorithms</topic><topic>Pattern Recognition, Automated</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Pixel</topic><topic>Pixels</topic><topic>Principal component analysis</topic><topic>Reproducibility of Results</topic><topic>Scalability</topic><topic>Sensitivity and Specificity</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Sorting</topic><topic>Streaming media</topic><topic>Telecommunications and information theory</topic><topic>Wavelet</topic><topic>Wavelet domain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kewu Peng</creatorcontrib><creatorcontrib>Kieffer, J.C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kewu Peng</au><au>Kieffer, J.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded image compression based on wavelet pixel classification and sorting</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>13</volume><issue>8</issue><spage>1011</spage><epage>1017</epage><pages>1011-1017</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>The method of modeling and ordering in wavelet domain is very important to design a successful algorithm of embedded image compression. In this paper, the modeling is limited to "pixel classification," the relationship between wavelet pixels in significance coding. Similarly, the ordering is limited to "pixel sorting," the coding order of wavelet pixels. We use pixel classification and sorting to provide a better understanding of previous works. The image pixels in wavelet domain are classified and sorted, either explicitly or implicitly, for embedded image compression. A new embedded image code is proposed based on a novel pixel classification and sorting (PCAS) scheme in wavelet domain. In PCAS, pixels to be coded are classified into several quantized contexts based on a large context template and sorted based on their estimated significance probabilities. The purpose of pixel classification is to exploit the intraband correlation in wavelet domain. Pixel sorting employs several fractional bit-plane coding passes to improve the rate-distortion performance. The proposed pixel classification and sorting technique is simple, yet effective, producing an embedded image code with excellent compression performance. In addition, our algorithm is able to provide either spatial or quality scalability with flexible complexity.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>15326843</pmid><doi>10.1109/TIP.2004.828441</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2004-08, Vol.13 (8), p.1011-1017
issn 1057-7149
1941-0042
language eng
recordid cdi_pubmed_primary_15326843
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Applied sciences
Artificial intelligence
Classification
Coding
Computer science
control theory
systems
Data Compression - methods
Discrete wavelet transforms
Exact sciences and technology
Image coding
Image compression
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Information, signal and communications theory
Partitioning algorithms
Pattern Recognition, Automated
Pattern recognition. Digital image processing. Computational geometry
Pixel
Pixels
Principal component analysis
Reproducibility of Results
Scalability
Sensitivity and Specificity
Signal processing
Signal Processing, Computer-Assisted
Sorting
Streaming media
Telecommunications and information theory
Wavelet
Wavelet domain
title Embedded image compression based on wavelet pixel classification and sorting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A42%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded%20image%20compression%20based%20on%20wavelet%20pixel%20classification%20and%20sorting&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Kewu%20Peng&rft.date=2004-08-01&rft.volume=13&rft.issue=8&rft.spage=1011&rft.epage=1017&rft.pages=1011-1017&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2004.828441&rft_dat=%3Cproquest_RIE%3E28378195%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=883538934&rft_id=info:pmid/15326843&rft_ieee_id=1315690&rfr_iscdi=true