Neural control of muscle blood flow during exercise

1 Hypertension Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390; and 2 The John B. Pierce Laboratory and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519 Activation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physiology (1985) 2004-08, Vol.97 (2), p.731-738
Hauptverfasser: Thomas, Gail D, Segal, Steven S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 2
container_start_page 731
container_title Journal of applied physiology (1985)
container_volume 97
creator Thomas, Gail D
Segal, Steven S
description 1 Hypertension Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390; and 2 The John B. Pierce Laboratory and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519 Activation of skeletal muscle fibers by somatic nerves results in vasodilation and functional hyperemia. Sympathetic nerve activity is integral to vasoconstriction and the maintenance of arterial blood pressure. Thus the interaction between somatic and sympathetic neuroeffector pathways underlies blood flow control to skeletal muscle during exercise. Muscle blood flow increases in proportion to the intensity of activity despite concomitant increases in sympathetic neural discharge to the active muscles, indicating a reduced responsiveness to sympathetic activation. However, increased sympathetic nerve activity can restrict blood flow to active muscles to maintain arterial blood pressure. In this brief review, we highlight recent advances in our understanding of the neural control of the circulation in exercising muscle by focusing on two main topics: 1 ) the role of motor unit recruitment and muscle fiber activation in generating vasodilator signals and 2 ) the nature of interaction between sympathetic vasoconstriction and functional vasodilation that occurs throughout the resistance network. Understanding how these control systems interact to govern muscle blood flow during exercise leads to a clear set of specific aims for future research. muscle contraction; sympathetic nerves; motor nerves; vasoconstriction; vasodilation Address for reprint requests and other correspondence: G. D. Thomas, Hypertension Division, Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8586 (E-mail: gail.thomas{at}utsouthwestern.edu ).
doi_str_mv 10.1152/japplphysiol.00076.2004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_15247201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>801920801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-7be7002b2bf8ae6f88bcaa3f70b6e818fce1f0eaea373c04411bbfb54668354c3</originalsourceid><addsrcrecordid>eNp1kM1OGzEURi1EVVLgFdoRi3Y14fpnbLNECNpKqGxgbdnOdTKREw92RpC3r0NSUVXqyot7zifrEPKFwpTSjl0u7TDEYbEtfYpTAFByygDEEZnUK2upBHpMJlp10KpOqxPyqZQlABWiox_JSYWEYkAnhP_CMdvY-LTe5BSbFJrVWHzExsWUZk2I6aWZjblfzxt8xez7gmfkQ7Cx4PnhPSVPd7ePNz_a-4fvP2-u71svlN60yqECYI65oC3KoLXz1vKgwEnUVAePNABatFxxD0JQ6lxwnZBS8054fkq-7neHnJ5HLBuz6ovHGO0a01iMlPIKuKIVvPgHXKYxr-vfDGOMStF1okJqD_mcSskYzJD7lc1bQ8Hsopq_o5q3qGYXtZqfD_OjW-Hs3TtUrADfA4t-vnjpM5rDSppvzd0Y4yO-bnbzV8owozg1wyxU69v_rQqbPzT_Dblql0c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222164554</pqid></control><display><type>article</type><title>Neural control of muscle blood flow during exercise</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Thomas, Gail D ; Segal, Steven S</creator><creatorcontrib>Thomas, Gail D ; Segal, Steven S</creatorcontrib><description>1 Hypertension Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390; and 2 The John B. Pierce Laboratory and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519 Activation of skeletal muscle fibers by somatic nerves results in vasodilation and functional hyperemia. Sympathetic nerve activity is integral to vasoconstriction and the maintenance of arterial blood pressure. Thus the interaction between somatic and sympathetic neuroeffector pathways underlies blood flow control to skeletal muscle during exercise. Muscle blood flow increases in proportion to the intensity of activity despite concomitant increases in sympathetic neural discharge to the active muscles, indicating a reduced responsiveness to sympathetic activation. However, increased sympathetic nerve activity can restrict blood flow to active muscles to maintain arterial blood pressure. In this brief review, we highlight recent advances in our understanding of the neural control of the circulation in exercising muscle by focusing on two main topics: 1 ) the role of motor unit recruitment and muscle fiber activation in generating vasodilator signals and 2 ) the nature of interaction between sympathetic vasoconstriction and functional vasodilation that occurs throughout the resistance network. Understanding how these control systems interact to govern muscle blood flow during exercise leads to a clear set of specific aims for future research. muscle contraction; sympathetic nerves; motor nerves; vasoconstriction; vasodilation Address for reprint requests and other correspondence: G. D. Thomas, Hypertension Division, Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8586 (E-mail: gail.thomas{at}utsouthwestern.edu ).</description><identifier>ISSN: 8750-7587</identifier><identifier>EISSN: 1522-1601</identifier><identifier>DOI: 10.1152/japplphysiol.00076.2004</identifier><identifier>PMID: 15247201</identifier><language>eng</language><publisher>United States: Am Physiological Soc</publisher><subject>Animals ; Circulatory system ; Exercise ; Exercise - physiology ; Humans ; Motor Neurons - physiology ; Muscle, Skeletal - blood supply ; Muscle, Skeletal - innervation ; Muscular system ; Nervous system ; Regional Blood Flow - physiology ; Sympathetic Nervous System - physiology</subject><ispartof>Journal of applied physiology (1985), 2004-08, Vol.97 (2), p.731-738</ispartof><rights>Copyright American Physiological Society Aug 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-7be7002b2bf8ae6f88bcaa3f70b6e818fce1f0eaea373c04411bbfb54668354c3</citedby><cites>FETCH-LOGICAL-c478t-7be7002b2bf8ae6f88bcaa3f70b6e818fce1f0eaea373c04411bbfb54668354c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15247201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thomas, Gail D</creatorcontrib><creatorcontrib>Segal, Steven S</creatorcontrib><title>Neural control of muscle blood flow during exercise</title><title>Journal of applied physiology (1985)</title><addtitle>J Appl Physiol (1985)</addtitle><description>1 Hypertension Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390; and 2 The John B. Pierce Laboratory and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519 Activation of skeletal muscle fibers by somatic nerves results in vasodilation and functional hyperemia. Sympathetic nerve activity is integral to vasoconstriction and the maintenance of arterial blood pressure. Thus the interaction between somatic and sympathetic neuroeffector pathways underlies blood flow control to skeletal muscle during exercise. Muscle blood flow increases in proportion to the intensity of activity despite concomitant increases in sympathetic neural discharge to the active muscles, indicating a reduced responsiveness to sympathetic activation. However, increased sympathetic nerve activity can restrict blood flow to active muscles to maintain arterial blood pressure. In this brief review, we highlight recent advances in our understanding of the neural control of the circulation in exercising muscle by focusing on two main topics: 1 ) the role of motor unit recruitment and muscle fiber activation in generating vasodilator signals and 2 ) the nature of interaction between sympathetic vasoconstriction and functional vasodilation that occurs throughout the resistance network. Understanding how these control systems interact to govern muscle blood flow during exercise leads to a clear set of specific aims for future research. muscle contraction; sympathetic nerves; motor nerves; vasoconstriction; vasodilation Address for reprint requests and other correspondence: G. D. Thomas, Hypertension Division, Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8586 (E-mail: gail.thomas{at}utsouthwestern.edu ).</description><subject>Animals</subject><subject>Circulatory system</subject><subject>Exercise</subject><subject>Exercise - physiology</subject><subject>Humans</subject><subject>Motor Neurons - physiology</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscular system</subject><subject>Nervous system</subject><subject>Regional Blood Flow - physiology</subject><subject>Sympathetic Nervous System - physiology</subject><issn>8750-7587</issn><issn>1522-1601</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1OGzEURi1EVVLgFdoRi3Y14fpnbLNECNpKqGxgbdnOdTKREw92RpC3r0NSUVXqyot7zifrEPKFwpTSjl0u7TDEYbEtfYpTAFByygDEEZnUK2upBHpMJlp10KpOqxPyqZQlABWiox_JSYWEYkAnhP_CMdvY-LTe5BSbFJrVWHzExsWUZk2I6aWZjblfzxt8xez7gmfkQ7Cx4PnhPSVPd7ePNz_a-4fvP2-u71svlN60yqECYI65oC3KoLXz1vKgwEnUVAePNABatFxxD0JQ6lxwnZBS8054fkq-7neHnJ5HLBuz6ovHGO0a01iMlPIKuKIVvPgHXKYxr-vfDGOMStF1okJqD_mcSskYzJD7lc1bQ8Hsopq_o5q3qGYXtZqfD_OjW-Hs3TtUrADfA4t-vnjpM5rDSppvzd0Y4yO-bnbzV8owozg1wyxU69v_rQqbPzT_Dblql0c</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Thomas, Gail D</creator><creator>Segal, Steven S</creator><general>Am Physiological Soc</general><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20040801</creationdate><title>Neural control of muscle blood flow during exercise</title><author>Thomas, Gail D ; Segal, Steven S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-7be7002b2bf8ae6f88bcaa3f70b6e818fce1f0eaea373c04411bbfb54668354c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Circulatory system</topic><topic>Exercise</topic><topic>Exercise - physiology</topic><topic>Humans</topic><topic>Motor Neurons - physiology</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscular system</topic><topic>Nervous system</topic><topic>Regional Blood Flow - physiology</topic><topic>Sympathetic Nervous System - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thomas, Gail D</creatorcontrib><creatorcontrib>Segal, Steven S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of applied physiology (1985)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thomas, Gail D</au><au>Segal, Steven S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural control of muscle blood flow during exercise</atitle><jtitle>Journal of applied physiology (1985)</jtitle><addtitle>J Appl Physiol (1985)</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>97</volume><issue>2</issue><spage>731</spage><epage>738</epage><pages>731-738</pages><issn>8750-7587</issn><eissn>1522-1601</eissn><abstract>1 Hypertension Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas 75390; and 2 The John B. Pierce Laboratory and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06519 Activation of skeletal muscle fibers by somatic nerves results in vasodilation and functional hyperemia. Sympathetic nerve activity is integral to vasoconstriction and the maintenance of arterial blood pressure. Thus the interaction between somatic and sympathetic neuroeffector pathways underlies blood flow control to skeletal muscle during exercise. Muscle blood flow increases in proportion to the intensity of activity despite concomitant increases in sympathetic neural discharge to the active muscles, indicating a reduced responsiveness to sympathetic activation. However, increased sympathetic nerve activity can restrict blood flow to active muscles to maintain arterial blood pressure. In this brief review, we highlight recent advances in our understanding of the neural control of the circulation in exercising muscle by focusing on two main topics: 1 ) the role of motor unit recruitment and muscle fiber activation in generating vasodilator signals and 2 ) the nature of interaction between sympathetic vasoconstriction and functional vasodilation that occurs throughout the resistance network. Understanding how these control systems interact to govern muscle blood flow during exercise leads to a clear set of specific aims for future research. muscle contraction; sympathetic nerves; motor nerves; vasoconstriction; vasodilation Address for reprint requests and other correspondence: G. D. Thomas, Hypertension Division, Univ. of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8586 (E-mail: gail.thomas{at}utsouthwestern.edu ).</abstract><cop>United States</cop><pub>Am Physiological Soc</pub><pmid>15247201</pmid><doi>10.1152/japplphysiol.00076.2004</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 8750-7587
ispartof Journal of applied physiology (1985), 2004-08, Vol.97 (2), p.731-738
issn 8750-7587
1522-1601
language eng
recordid cdi_pubmed_primary_15247201
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Circulatory system
Exercise
Exercise - physiology
Humans
Motor Neurons - physiology
Muscle, Skeletal - blood supply
Muscle, Skeletal - innervation
Muscular system
Nervous system
Regional Blood Flow - physiology
Sympathetic Nervous System - physiology
title Neural control of muscle blood flow during exercise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20control%20of%20muscle%20blood%20flow%20during%20exercise&rft.jtitle=Journal%20of%20applied%20physiology%20(1985)&rft.au=Thomas,%20Gail%20D&rft.date=2004-08-01&rft.volume=97&rft.issue=2&rft.spage=731&rft.epage=738&rft.pages=731-738&rft.issn=8750-7587&rft.eissn=1522-1601&rft_id=info:doi/10.1152/japplphysiol.00076.2004&rft_dat=%3Cproquest_pubme%3E801920801%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222164554&rft_id=info:pmid/15247201&rfr_iscdi=true