Perinatal Iron Deficiency Alters Apical Dendritic Growth in Hippocampal CA1 Pyramidal Neurons

Iron deficiency early in life is associated with cognitive disturbances that persist beyond the period of iron deficiency. Within cognitive processing circuitry, the hippocampus is particularly susceptible to insults during the perinatal period. During the hippocampal growth spurt, which is predomin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental neuroscience 2003-11, Vol.25 (6), p.412-420
Hauptverfasser: Jorgenson, Lyric A., Wobken, Jane D., Georgieff, Michael K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 420
container_issue 6
container_start_page 412
container_title Developmental neuroscience
container_volume 25
creator Jorgenson, Lyric A.
Wobken, Jane D.
Georgieff, Michael K.
description Iron deficiency early in life is associated with cognitive disturbances that persist beyond the period of iron deficiency. Within cognitive processing circuitry, the hippocampus is particularly susceptible to insults during the perinatal period. During the hippocampal growth spurt, which is predominantly postnatal in rodents, iron transport proteins and their messenger RNA stabilizing proteins are upregulated, suggesting an increased demand for iron import during this developmental period. Rat pups deprived of iron during the perinatal period show a 30–40% decrease in hippocampal metabolic activity during postnatal hippocampal development. We hypothesized that this reduced hippocampal neuronal metabolism impedes developmental processes such as neurite outgrowth. The goals of the current study were to investigate the effects of perinatal iron deficiency on apical dendritic segment growth in the postnatal day (P) 15 hippocampus and to determine if structural abnormalities persist into adulthood (P65) following iron treatment. Qualitative and quantitative immunohistochemical analyses of dendritic structure and growth using microtubule-associated protein-2 as an index showed that iron-deficient P15 pups have truncated apical dendritic morphology in CA1 and a persistence of an immature apical dendritic pattern at P65. These results demonstrate that perinatal iron deficiency disrupts developmental processes in the hippocampal subarea CA1 and that these changes persist despite iron repletion. These structural abnormalities may contribute to the learning and memory deficits that occur during and following early iron deficiency.
doi_str_mv 10.1159/000075667
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_14966382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>677193111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-905a346270985c99f10f878024d70601a2dbf8ae5e29b72f83bc09ca4abfddeb3</originalsourceid><addsrcrecordid>eNqF0UlLxDAUB_Agio7LwbMgxYPgoZqkbZZjmRkXGHQOepSQpolm7GbSIvPtjc6oIIK5hPB--fOSB8AhgucIZfwChkUzQugGGKEUo5izjG-CEUwoizNGyA7Y9X4BIcI8odtgB6WckIThEXica2cb2csqunFtE020scrqRi2jvOq181HeWRWqE92UzvZWRVeufeufI9tE17brWiXrLtTHOYrmSydrW4bTrR5Cmt8HW0ZWXh-s9z3wcDm9H1_Hs7urm3E-i1XCSB9zmMkkJZjC0Lji3CBoGGUQpyWFBCKJy8IwqTONeUGxYUmhIFcylYUpS10ke-B0ldu59nXQvhe19UpXlWx0O3hBUZZCztG_EFGWUYpIgCe_4KIdXBMeITAOn55y-IHOVki51nunjeicraVbCgTFx2TE92SCPV4HDkWtyx-5HkUARyvwIt2Tdt_g6_rJn9XJ7fQTiK40yTvSkJuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221154906</pqid></control><display><type>article</type><title>Perinatal Iron Deficiency Alters Apical Dendritic Growth in Hippocampal CA1 Pyramidal Neurons</title><source>Karger Journals</source><source>MEDLINE</source><creator>Jorgenson, Lyric A. ; Wobken, Jane D. ; Georgieff, Michael K.</creator><creatorcontrib>Jorgenson, Lyric A. ; Wobken, Jane D. ; Georgieff, Michael K.</creatorcontrib><description>Iron deficiency early in life is associated with cognitive disturbances that persist beyond the period of iron deficiency. Within cognitive processing circuitry, the hippocampus is particularly susceptible to insults during the perinatal period. During the hippocampal growth spurt, which is predominantly postnatal in rodents, iron transport proteins and their messenger RNA stabilizing proteins are upregulated, suggesting an increased demand for iron import during this developmental period. Rat pups deprived of iron during the perinatal period show a 30–40% decrease in hippocampal metabolic activity during postnatal hippocampal development. We hypothesized that this reduced hippocampal neuronal metabolism impedes developmental processes such as neurite outgrowth. The goals of the current study were to investigate the effects of perinatal iron deficiency on apical dendritic segment growth in the postnatal day (P) 15 hippocampus and to determine if structural abnormalities persist into adulthood (P65) following iron treatment. Qualitative and quantitative immunohistochemical analyses of dendritic structure and growth using microtubule-associated protein-2 as an index showed that iron-deficient P15 pups have truncated apical dendritic morphology in CA1 and a persistence of an immature apical dendritic pattern at P65. These results demonstrate that perinatal iron deficiency disrupts developmental processes in the hippocampal subarea CA1 and that these changes persist despite iron repletion. These structural abnormalities may contribute to the learning and memory deficits that occur during and following early iron deficiency.</description><identifier>ISSN: 0378-5866</identifier><identifier>EISSN: 1421-9859</identifier><identifier>DOI: 10.1159/000075667</identifier><identifier>PMID: 14966382</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Animals ; Animals, Newborn ; Cell Differentiation - drug effects ; Cell Differentiation - physiology ; Dendrites - metabolism ; Dendrites - pathology ; Down-Regulation - drug effects ; Down-Regulation - physiology ; Female ; Fluorescent Antibody Technique ; Hippocampus - growth &amp; development ; Hippocampus - metabolism ; Hippocampus - pathology ; Iron - deficiency ; Iron - pharmacology ; Male ; Microtubule-Associated Proteins - metabolism ; Organ Size - drug effects ; Organ Size - physiology ; Original Paper ; Prenatal Nutritional Physiological Phenomena - physiology ; Pyramidal Cells - metabolism ; Pyramidal Cells - pathology ; Rats ; Rats, Sprague-Dawley</subject><ispartof>Developmental neuroscience, 2003-11, Vol.25 (6), p.412-420</ispartof><rights>2003 S. Karger AG, Basel</rights><rights>Copyright 2003 S. Karger AG, Basel</rights><rights>Copyright (c) 2003 S. Karger AG, Basel</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-905a346270985c99f10f878024d70601a2dbf8ae5e29b72f83bc09ca4abfddeb3</citedby><cites>FETCH-LOGICAL-c386t-905a346270985c99f10f878024d70601a2dbf8ae5e29b72f83bc09ca4abfddeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2423,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14966382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jorgenson, Lyric A.</creatorcontrib><creatorcontrib>Wobken, Jane D.</creatorcontrib><creatorcontrib>Georgieff, Michael K.</creatorcontrib><title>Perinatal Iron Deficiency Alters Apical Dendritic Growth in Hippocampal CA1 Pyramidal Neurons</title><title>Developmental neuroscience</title><addtitle>Dev Neurosci</addtitle><description>Iron deficiency early in life is associated with cognitive disturbances that persist beyond the period of iron deficiency. Within cognitive processing circuitry, the hippocampus is particularly susceptible to insults during the perinatal period. During the hippocampal growth spurt, which is predominantly postnatal in rodents, iron transport proteins and their messenger RNA stabilizing proteins are upregulated, suggesting an increased demand for iron import during this developmental period. Rat pups deprived of iron during the perinatal period show a 30–40% decrease in hippocampal metabolic activity during postnatal hippocampal development. We hypothesized that this reduced hippocampal neuronal metabolism impedes developmental processes such as neurite outgrowth. The goals of the current study were to investigate the effects of perinatal iron deficiency on apical dendritic segment growth in the postnatal day (P) 15 hippocampus and to determine if structural abnormalities persist into adulthood (P65) following iron treatment. Qualitative and quantitative immunohistochemical analyses of dendritic structure and growth using microtubule-associated protein-2 as an index showed that iron-deficient P15 pups have truncated apical dendritic morphology in CA1 and a persistence of an immature apical dendritic pattern at P65. These results demonstrate that perinatal iron deficiency disrupts developmental processes in the hippocampal subarea CA1 and that these changes persist despite iron repletion. These structural abnormalities may contribute to the learning and memory deficits that occur during and following early iron deficiency.</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Differentiation - physiology</subject><subject>Dendrites - metabolism</subject><subject>Dendrites - pathology</subject><subject>Down-Regulation - drug effects</subject><subject>Down-Regulation - physiology</subject><subject>Female</subject><subject>Fluorescent Antibody Technique</subject><subject>Hippocampus - growth &amp; development</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - pathology</subject><subject>Iron - deficiency</subject><subject>Iron - pharmacology</subject><subject>Male</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Organ Size - drug effects</subject><subject>Organ Size - physiology</subject><subject>Original Paper</subject><subject>Prenatal Nutritional Physiological Phenomena - physiology</subject><subject>Pyramidal Cells - metabolism</subject><subject>Pyramidal Cells - pathology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><issn>0378-5866</issn><issn>1421-9859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0UlLxDAUB_Agio7LwbMgxYPgoZqkbZZjmRkXGHQOepSQpolm7GbSIvPtjc6oIIK5hPB--fOSB8AhgucIZfwChkUzQugGGKEUo5izjG-CEUwoizNGyA7Y9X4BIcI8odtgB6WckIThEXica2cb2csqunFtE020scrqRi2jvOq181HeWRWqE92UzvZWRVeufeufI9tE17brWiXrLtTHOYrmSydrW4bTrR5Cmt8HW0ZWXh-s9z3wcDm9H1_Hs7urm3E-i1XCSB9zmMkkJZjC0Lji3CBoGGUQpyWFBCKJy8IwqTONeUGxYUmhIFcylYUpS10ke-B0ldu59nXQvhe19UpXlWx0O3hBUZZCztG_EFGWUYpIgCe_4KIdXBMeITAOn55y-IHOVki51nunjeicraVbCgTFx2TE92SCPV4HDkWtyx-5HkUARyvwIt2Tdt_g6_rJn9XJ7fQTiK40yTvSkJuo</recordid><startdate>200311</startdate><enddate>200311</enddate><creator>Jorgenson, Lyric A.</creator><creator>Wobken, Jane D.</creator><creator>Georgieff, Michael K.</creator><general>S. Karger AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200311</creationdate><title>Perinatal Iron Deficiency Alters Apical Dendritic Growth in Hippocampal CA1 Pyramidal Neurons</title><author>Jorgenson, Lyric A. ; Wobken, Jane D. ; Georgieff, Michael K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-905a346270985c99f10f878024d70601a2dbf8ae5e29b72f83bc09ca4abfddeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Differentiation - physiology</topic><topic>Dendrites - metabolism</topic><topic>Dendrites - pathology</topic><topic>Down-Regulation - drug effects</topic><topic>Down-Regulation - physiology</topic><topic>Female</topic><topic>Fluorescent Antibody Technique</topic><topic>Hippocampus - growth &amp; development</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - pathology</topic><topic>Iron - deficiency</topic><topic>Iron - pharmacology</topic><topic>Male</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Organ Size - drug effects</topic><topic>Organ Size - physiology</topic><topic>Original Paper</topic><topic>Prenatal Nutritional Physiological Phenomena - physiology</topic><topic>Pyramidal Cells - metabolism</topic><topic>Pyramidal Cells - pathology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jorgenson, Lyric A.</creatorcontrib><creatorcontrib>Wobken, Jane D.</creatorcontrib><creatorcontrib>Georgieff, Michael K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jorgenson, Lyric A.</au><au>Wobken, Jane D.</au><au>Georgieff, Michael K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perinatal Iron Deficiency Alters Apical Dendritic Growth in Hippocampal CA1 Pyramidal Neurons</atitle><jtitle>Developmental neuroscience</jtitle><addtitle>Dev Neurosci</addtitle><date>2003-11</date><risdate>2003</risdate><volume>25</volume><issue>6</issue><spage>412</spage><epage>420</epage><pages>412-420</pages><issn>0378-5866</issn><eissn>1421-9859</eissn><abstract>Iron deficiency early in life is associated with cognitive disturbances that persist beyond the period of iron deficiency. Within cognitive processing circuitry, the hippocampus is particularly susceptible to insults during the perinatal period. During the hippocampal growth spurt, which is predominantly postnatal in rodents, iron transport proteins and their messenger RNA stabilizing proteins are upregulated, suggesting an increased demand for iron import during this developmental period. Rat pups deprived of iron during the perinatal period show a 30–40% decrease in hippocampal metabolic activity during postnatal hippocampal development. We hypothesized that this reduced hippocampal neuronal metabolism impedes developmental processes such as neurite outgrowth. The goals of the current study were to investigate the effects of perinatal iron deficiency on apical dendritic segment growth in the postnatal day (P) 15 hippocampus and to determine if structural abnormalities persist into adulthood (P65) following iron treatment. Qualitative and quantitative immunohistochemical analyses of dendritic structure and growth using microtubule-associated protein-2 as an index showed that iron-deficient P15 pups have truncated apical dendritic morphology in CA1 and a persistence of an immature apical dendritic pattern at P65. These results demonstrate that perinatal iron deficiency disrupts developmental processes in the hippocampal subarea CA1 and that these changes persist despite iron repletion. These structural abnormalities may contribute to the learning and memory deficits that occur during and following early iron deficiency.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>14966382</pmid><doi>10.1159/000075667</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-5866
ispartof Developmental neuroscience, 2003-11, Vol.25 (6), p.412-420
issn 0378-5866
1421-9859
language eng
recordid cdi_pubmed_primary_14966382
source Karger Journals; MEDLINE
subjects Animals
Animals, Newborn
Cell Differentiation - drug effects
Cell Differentiation - physiology
Dendrites - metabolism
Dendrites - pathology
Down-Regulation - drug effects
Down-Regulation - physiology
Female
Fluorescent Antibody Technique
Hippocampus - growth & development
Hippocampus - metabolism
Hippocampus - pathology
Iron - deficiency
Iron - pharmacology
Male
Microtubule-Associated Proteins - metabolism
Organ Size - drug effects
Organ Size - physiology
Original Paper
Prenatal Nutritional Physiological Phenomena - physiology
Pyramidal Cells - metabolism
Pyramidal Cells - pathology
Rats
Rats, Sprague-Dawley
title Perinatal Iron Deficiency Alters Apical Dendritic Growth in Hippocampal CA1 Pyramidal Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perinatal%20Iron%20Deficiency%20Alters%20Apical%20Dendritic%20Growth%20in%20Hippocampal%20CA1%20Pyramidal%20Neurons&rft.jtitle=Developmental%20neuroscience&rft.au=Jorgenson,%20Lyric%20A.&rft.date=2003-11&rft.volume=25&rft.issue=6&rft.spage=412&rft.epage=420&rft.pages=412-420&rft.issn=0378-5866&rft.eissn=1421-9859&rft_id=info:doi/10.1159/000075667&rft_dat=%3Cproquest_pubme%3E677193111%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221154906&rft_id=info:pmid/14966382&rfr_iscdi=true