Guanylyl Cyclase Is an ATP Sensor Coupling Nitric Oxide Signaling to Cell Metabolism

Defending cellular integrity against disturbances in intracellular concentrations of ATP ([ ATP]i) is predicated on coordinating the selection of substrates and their flux through metabolic pathways (metabolic signaling), ATP transfer from sites of production to utilization (energetic signaling), an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2004-01, Vol.101 (1), p.37-42
Hauptverfasser: Ruiz-Stewart, I., Tiyyagura, S. R., Lin, J. E., Kazerounian, S., Pitari, G. M., Schulz, S., Martini, E., Murad, F., Waldman, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue 1
container_start_page 37
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 101
creator Ruiz-Stewart, I.
Tiyyagura, S. R.
Lin, J. E.
Kazerounian, S.
Pitari, G. M.
Schulz, S.
Martini, E.
Murad, F.
Waldman, S. A.
description Defending cellular integrity against disturbances in intracellular concentrations of ATP ([ ATP]i) is predicated on coordinating the selection of substrates and their flux through metabolic pathways (metabolic signaling), ATP transfer from sites of production to utilization (energetic signaling), and the regulation of processes consuming energy (cell signaling). Whereas NO and its receptor, soluble guanylyl cyclase (sGC), are emerging as key mediators coordinating ATP supply and demand, mechanisms coupling this pathway with metabolic and energetic signaling remain undefined. Here, we demonstrate that sGC is a nucleotide sensor whose responsiveness to NO is regulated by [ ATP]i. Indeed, ATP inhibits purified sGC with a Kipredicting >60% inhibition of NO signaling in cells maintaining physiological [ nucleotide]i. ATP inhibits sGC by interacting with a regulatory site that prefers ATP > GTP. Moreover, alterations in [ ATP]i, by permeabilization and nucleotide clamping or inhibition of mitochondrial ATP synthase, regulate NO signaling by sGC. Thus, [ ATP]iserves as a "gain control" for NO signaling by sGC. At homeostatic [ ATP]i, NO activation of sGC is repressed, whereas insults that reduce [ ATP]i, derepress sGC and amplify responses to NO. Hence, sGC forms a key synapse integrating metabolic, energetic, and cell signaling, wherein ATP is the transmitter, allosteric inhibition the coupling mechanism, and regulated accumulation of cGMP the response.
doi_str_mv 10.1073/pnas.0305080101
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_14684830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148369</jstor_id><sourcerecordid>3148369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-549e85e39af328008a90f7e0a79f3140584f39780342f39378073e0ce3b935a73</originalsourceid><addsrcrecordid>eNp9kUFvEzEQhS0EomnhzAUhCwlu2453vLv2gUO1glKpUKSGs-VsvcGRYwfbi5p_X4dGDXDg5JHne6M38wh5xeCUQYdnG6_TKSA0IIABe0JmDCSrWi7hKZkB1F0leM2PyHFKKwCQjYDn5IjxVnCBMCPzi0n7rds62m8Hp5Ohl4lqT8_n3-iN8SlE2odp46xf0q82RzvQ6zt7a-iNXXr9-zsH2hvn6BeT9SI4m9YvyLNRu2Re7t8T8v3Tx3n_ubq6vrjsz6-qgYsuVw2XRjQGpR6xFgBCSxg7A7qTIzIOjeAjyk4A8roUWKoODQwGFxIb3eEJ-fAwdzMt1uZ2MD5H7dQm2rWOWxW0VX93vP2hluGXKtMZ8qJ_v9fH8HMyKau1TUPZRXsTpqSKJwkthwK-_QdchSmW_ZOqgaEQiG2Bzh6gIYaUohkfjTBQu7TULi11SKso3vzp_8Dv4ynAuz2wUx7GMcUUdmqcnMvmLhfu9X-4Q3uVcoiP_XIFga3Ee_Y8rxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201388336</pqid></control><display><type>article</type><title>Guanylyl Cyclase Is an ATP Sensor Coupling Nitric Oxide Signaling to Cell Metabolism</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ruiz-Stewart, I. ; Tiyyagura, S. R. ; Lin, J. E. ; Kazerounian, S. ; Pitari, G. M. ; Schulz, S. ; Martini, E. ; Murad, F. ; Waldman, S. A.</creator><creatorcontrib>Ruiz-Stewart, I. ; Tiyyagura, S. R. ; Lin, J. E. ; Kazerounian, S. ; Pitari, G. M. ; Schulz, S. ; Martini, E. ; Murad, F. ; Waldman, S. A.</creatorcontrib><description>Defending cellular integrity against disturbances in intracellular concentrations of ATP ([ ATP]i) is predicated on coordinating the selection of substrates and their flux through metabolic pathways (metabolic signaling), ATP transfer from sites of production to utilization (energetic signaling), and the regulation of processes consuming energy (cell signaling). Whereas NO and its receptor, soluble guanylyl cyclase (sGC), are emerging as key mediators coordinating ATP supply and demand, mechanisms coupling this pathway with metabolic and energetic signaling remain undefined. Here, we demonstrate that sGC is a nucleotide sensor whose responsiveness to NO is regulated by [ ATP]i. Indeed, ATP inhibits purified sGC with a Kipredicting &gt;60% inhibition of NO signaling in cells maintaining physiological [ nucleotide]i. ATP inhibits sGC by interacting with a regulatory site that prefers ATP &gt; GTP. Moreover, alterations in [ ATP]i, by permeabilization and nucleotide clamping or inhibition of mitochondrial ATP synthase, regulate NO signaling by sGC. Thus, [ ATP]iserves as a "gain control" for NO signaling by sGC. At homeostatic [ ATP]i, NO activation of sGC is repressed, whereas insults that reduce [ ATP]i, derepress sGC and amplify responses to NO. Hence, sGC forms a key synapse integrating metabolic, energetic, and cell signaling, wherein ATP is the transmitter, allosteric inhibition the coupling mechanism, and regulated accumulation of cGMP the response.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0305080101</identifier><identifier>PMID: 14684830</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenine nucleotides ; Adenosine Triphosphate - metabolism ; Adenosine Triphosphate - pharmacology ; Allosteric regulation ; Allosteric Site ; Biological Sciences ; Cells ; Cells, Cultured ; Cellular metabolism ; Cyclic GMP - metabolism ; Energy Metabolism ; Enzymes ; Guanylate Cyclase - antagonists &amp; inhibitors ; Guanylate Cyclase - chemistry ; Guanylate Cyclase - metabolism ; Humans ; Kinetics ; Metabolism ; Mitochondria - metabolism ; Muscle, Smooth, Vascular - drug effects ; Muscle, Smooth, Vascular - metabolism ; Nitric oxide ; Nitric Oxide - metabolism ; Nucleotides ; Oligomycins ; Oxygen metabolism ; Reaction kinetics ; Sensors ; Signal Transduction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-01, Vol.101 (1), p.37-42</ispartof><rights>Copyright 1993-2004 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 6, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-549e85e39af328008a90f7e0a79f3140584f39780342f39378073e0ce3b935a73</citedby><cites>FETCH-LOGICAL-c487t-549e85e39af328008a90f7e0a79f3140584f39780342f39378073e0ce3b935a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148369$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148369$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14684830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz-Stewart, I.</creatorcontrib><creatorcontrib>Tiyyagura, S. R.</creatorcontrib><creatorcontrib>Lin, J. E.</creatorcontrib><creatorcontrib>Kazerounian, S.</creatorcontrib><creatorcontrib>Pitari, G. M.</creatorcontrib><creatorcontrib>Schulz, S.</creatorcontrib><creatorcontrib>Martini, E.</creatorcontrib><creatorcontrib>Murad, F.</creatorcontrib><creatorcontrib>Waldman, S. A.</creatorcontrib><title>Guanylyl Cyclase Is an ATP Sensor Coupling Nitric Oxide Signaling to Cell Metabolism</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Defending cellular integrity against disturbances in intracellular concentrations of ATP ([ ATP]i) is predicated on coordinating the selection of substrates and their flux through metabolic pathways (metabolic signaling), ATP transfer from sites of production to utilization (energetic signaling), and the regulation of processes consuming energy (cell signaling). Whereas NO and its receptor, soluble guanylyl cyclase (sGC), are emerging as key mediators coordinating ATP supply and demand, mechanisms coupling this pathway with metabolic and energetic signaling remain undefined. Here, we demonstrate that sGC is a nucleotide sensor whose responsiveness to NO is regulated by [ ATP]i. Indeed, ATP inhibits purified sGC with a Kipredicting &gt;60% inhibition of NO signaling in cells maintaining physiological [ nucleotide]i. ATP inhibits sGC by interacting with a regulatory site that prefers ATP &gt; GTP. Moreover, alterations in [ ATP]i, by permeabilization and nucleotide clamping or inhibition of mitochondrial ATP synthase, regulate NO signaling by sGC. Thus, [ ATP]iserves as a "gain control" for NO signaling by sGC. At homeostatic [ ATP]i, NO activation of sGC is repressed, whereas insults that reduce [ ATP]i, derepress sGC and amplify responses to NO. Hence, sGC forms a key synapse integrating metabolic, energetic, and cell signaling, wherein ATP is the transmitter, allosteric inhibition the coupling mechanism, and regulated accumulation of cGMP the response.</description><subject>Adenine nucleotides</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Adenosine Triphosphate - pharmacology</subject><subject>Allosteric regulation</subject><subject>Allosteric Site</subject><subject>Biological Sciences</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Cellular metabolism</subject><subject>Cyclic GMP - metabolism</subject><subject>Energy Metabolism</subject><subject>Enzymes</subject><subject>Guanylate Cyclase - antagonists &amp; inhibitors</subject><subject>Guanylate Cyclase - chemistry</subject><subject>Guanylate Cyclase - metabolism</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Metabolism</subject><subject>Mitochondria - metabolism</subject><subject>Muscle, Smooth, Vascular - drug effects</subject><subject>Muscle, Smooth, Vascular - metabolism</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Nucleotides</subject><subject>Oligomycins</subject><subject>Oxygen metabolism</subject><subject>Reaction kinetics</subject><subject>Sensors</subject><subject>Signal Transduction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFvEzEQhS0EomnhzAUhCwlu2453vLv2gUO1glKpUKSGs-VsvcGRYwfbi5p_X4dGDXDg5JHne6M38wh5xeCUQYdnG6_TKSA0IIABe0JmDCSrWi7hKZkB1F0leM2PyHFKKwCQjYDn5IjxVnCBMCPzi0n7rds62m8Hp5Ohl4lqT8_n3-iN8SlE2odp46xf0q82RzvQ6zt7a-iNXXr9-zsH2hvn6BeT9SI4m9YvyLNRu2Re7t8T8v3Tx3n_ubq6vrjsz6-qgYsuVw2XRjQGpR6xFgBCSxg7A7qTIzIOjeAjyk4A8roUWKoODQwGFxIb3eEJ-fAwdzMt1uZ2MD5H7dQm2rWOWxW0VX93vP2hluGXKtMZ8qJ_v9fH8HMyKau1TUPZRXsTpqSKJwkthwK-_QdchSmW_ZOqgaEQiG2Bzh6gIYaUohkfjTBQu7TULi11SKso3vzp_8Dv4ynAuz2wUx7GMcUUdmqcnMvmLhfu9X-4Q3uVcoiP_XIFga3Ee_Y8rxA</recordid><startdate>20040106</startdate><enddate>20040106</enddate><creator>Ruiz-Stewart, I.</creator><creator>Tiyyagura, S. R.</creator><creator>Lin, J. E.</creator><creator>Kazerounian, S.</creator><creator>Pitari, G. M.</creator><creator>Schulz, S.</creator><creator>Martini, E.</creator><creator>Murad, F.</creator><creator>Waldman, S. A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040106</creationdate><title>Guanylyl Cyclase Is an ATP Sensor Coupling Nitric Oxide Signaling to Cell Metabolism</title><author>Ruiz-Stewart, I. ; Tiyyagura, S. R. ; Lin, J. E. ; Kazerounian, S. ; Pitari, G. M. ; Schulz, S. ; Martini, E. ; Murad, F. ; Waldman, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-549e85e39af328008a90f7e0a79f3140584f39780342f39378073e0ce3b935a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adenine nucleotides</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Adenosine Triphosphate - pharmacology</topic><topic>Allosteric regulation</topic><topic>Allosteric Site</topic><topic>Biological Sciences</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Cellular metabolism</topic><topic>Cyclic GMP - metabolism</topic><topic>Energy Metabolism</topic><topic>Enzymes</topic><topic>Guanylate Cyclase - antagonists &amp; inhibitors</topic><topic>Guanylate Cyclase - chemistry</topic><topic>Guanylate Cyclase - metabolism</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Metabolism</topic><topic>Mitochondria - metabolism</topic><topic>Muscle, Smooth, Vascular - drug effects</topic><topic>Muscle, Smooth, Vascular - metabolism</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Nucleotides</topic><topic>Oligomycins</topic><topic>Oxygen metabolism</topic><topic>Reaction kinetics</topic><topic>Sensors</topic><topic>Signal Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Stewart, I.</creatorcontrib><creatorcontrib>Tiyyagura, S. R.</creatorcontrib><creatorcontrib>Lin, J. E.</creatorcontrib><creatorcontrib>Kazerounian, S.</creatorcontrib><creatorcontrib>Pitari, G. M.</creatorcontrib><creatorcontrib>Schulz, S.</creatorcontrib><creatorcontrib>Martini, E.</creatorcontrib><creatorcontrib>Murad, F.</creatorcontrib><creatorcontrib>Waldman, S. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruiz-Stewart, I.</au><au>Tiyyagura, S. R.</au><au>Lin, J. E.</au><au>Kazerounian, S.</au><au>Pitari, G. M.</au><au>Schulz, S.</au><au>Martini, E.</au><au>Murad, F.</au><au>Waldman, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guanylyl Cyclase Is an ATP Sensor Coupling Nitric Oxide Signaling to Cell Metabolism</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-01-06</date><risdate>2004</risdate><volume>101</volume><issue>1</issue><spage>37</spage><epage>42</epage><pages>37-42</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Defending cellular integrity against disturbances in intracellular concentrations of ATP ([ ATP]i) is predicated on coordinating the selection of substrates and their flux through metabolic pathways (metabolic signaling), ATP transfer from sites of production to utilization (energetic signaling), and the regulation of processes consuming energy (cell signaling). Whereas NO and its receptor, soluble guanylyl cyclase (sGC), are emerging as key mediators coordinating ATP supply and demand, mechanisms coupling this pathway with metabolic and energetic signaling remain undefined. Here, we demonstrate that sGC is a nucleotide sensor whose responsiveness to NO is regulated by [ ATP]i. Indeed, ATP inhibits purified sGC with a Kipredicting &gt;60% inhibition of NO signaling in cells maintaining physiological [ nucleotide]i. ATP inhibits sGC by interacting with a regulatory site that prefers ATP &gt; GTP. Moreover, alterations in [ ATP]i, by permeabilization and nucleotide clamping or inhibition of mitochondrial ATP synthase, regulate NO signaling by sGC. Thus, [ ATP]iserves as a "gain control" for NO signaling by sGC. At homeostatic [ ATP]i, NO activation of sGC is repressed, whereas insults that reduce [ ATP]i, derepress sGC and amplify responses to NO. Hence, sGC forms a key synapse integrating metabolic, energetic, and cell signaling, wherein ATP is the transmitter, allosteric inhibition the coupling mechanism, and regulated accumulation of cGMP the response.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14684830</pmid><doi>10.1073/pnas.0305080101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2004-01, Vol.101 (1), p.37-42
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_14684830
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenine nucleotides
Adenosine Triphosphate - metabolism
Adenosine Triphosphate - pharmacology
Allosteric regulation
Allosteric Site
Biological Sciences
Cells
Cells, Cultured
Cellular metabolism
Cyclic GMP - metabolism
Energy Metabolism
Enzymes
Guanylate Cyclase - antagonists & inhibitors
Guanylate Cyclase - chemistry
Guanylate Cyclase - metabolism
Humans
Kinetics
Metabolism
Mitochondria - metabolism
Muscle, Smooth, Vascular - drug effects
Muscle, Smooth, Vascular - metabolism
Nitric oxide
Nitric Oxide - metabolism
Nucleotides
Oligomycins
Oxygen metabolism
Reaction kinetics
Sensors
Signal Transduction
title Guanylyl Cyclase Is an ATP Sensor Coupling Nitric Oxide Signaling to Cell Metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A09%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guanylyl%20Cyclase%20Is%20an%20ATP%20Sensor%20Coupling%20Nitric%20Oxide%20Signaling%20to%20Cell%20Metabolism&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ruiz-Stewart,%20I.&rft.date=2004-01-06&rft.volume=101&rft.issue=1&rft.spage=37&rft.epage=42&rft.pages=37-42&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0305080101&rft_dat=%3Cjstor_pubme%3E3148369%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201388336&rft_id=info:pmid/14684830&rft_jstor_id=3148369&rfr_iscdi=true