Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance
Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2003-11, Vol.100 (23), p.13549-13554 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13554 |
---|---|
container_issue | 23 |
container_start_page | 13549 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 100 |
creator | Hirsch, L. R. Stafford, R. J. Bankson, J. A. Sershen, S. R. Rivera, B. Price, R. E. Hazle, J. D. Halas, N. J. West, J. L. |
description | Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (ΔT = 37.4 ± 6.6° C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (ΔT < 10° C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged. |
doi_str_mv | 10.1073/pnas.2232479100 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_14597719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148177</jstor_id><sourcerecordid>3148177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-34626b960d29efcb4d00972fced0952f986ebc57babcf0b3688026ebd0834d5c3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhzAWhiAMSh7Tjj_jjwAFVpVRqi4SWG5Ll2E43q8Te2glq_3u87KoLXDiN7fm90fM8hF5jOMEg6OkmmHxCCCVMKAzwBC0wKFxzpuApWgAQUUtG2BF6kfMaAFQj4Tk6wqxRQmC1QD9uTIh55YehvvauN5N31Y03qb4MXTKp3JYrn0Yz_K5m81DFrlrOY0y5moPzqbo2t8FPva2--RyDCdZXF3PvtoeX6Flnhuxf7esx-v75fHn2pb76enF59umqtg3HU00ZJ7xVHBxRvrMtc8WoIJ31rhgmnZLct7YRrWltBy3lUgIpTw4kZa6x9Bh93M3dzO3onfVhSmbQm9SPJj3oaHr9dyf0K30bf2rCqWxw0b_f61O8m32e9NhnW3Zigo9z1gJTAY3kBXz3D7iOcwrlb5oAZgCc0wKd7iCbYs7Jd49GMOhtanqbmj6kVhRv__R_4PcxFeDDHtgqD-NAE6oxbZjS3TwMk7-fClv9hy3Imx2yzlNMjwzFTGIh6C86frZ3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201400663</pqid></control><display><type>article</type><title>Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hirsch, L. R. ; Stafford, R. J. ; Bankson, J. A. ; Sershen, S. R. ; Rivera, B. ; Price, R. E. ; Hazle, J. D. ; Halas, N. J. ; West, J. L.</creator><creatorcontrib>Hirsch, L. R. ; Stafford, R. J. ; Bankson, J. A. ; Sershen, S. R. ; Rivera, B. ; Price, R. E. ; Hazle, J. D. ; Halas, N. J. ; West, J. L.</creatorcontrib><description>Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (ΔT = 37.4 ± 6.6° C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (ΔT < 10° C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2232479100</identifier><identifier>PMID: 14597719</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell Line, Tumor ; Cell membranes ; Colloids ; Dyes ; Female ; Gold - chemistry ; Histology ; Humans ; Hyperthermia, Induced ; Infrared Rays ; Lasers ; Magnetic Resonance Imaging ; Magnetic Resonance Spectroscopy - methods ; Medical imaging ; Medical research ; Mice ; Mice, SCID ; Models, Statistical ; Nanoparticles ; Nanotechnology ; Neoplasms - therapy ; Particle resonance ; Silicon - chemistry ; Temperature ; Tissues ; Tumors ; Viability ; Yield point</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (23), p.13549-13554</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 11, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-34626b960d29efcb4d00972fced0952f986ebc57babcf0b3688026ebd0834d5c3</citedby><cites>FETCH-LOGICAL-c561t-34626b960d29efcb4d00972fced0952f986ebc57babcf0b3688026ebd0834d5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148177$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148177$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27933,27934,53800,53802,58026,58259</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14597719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirsch, L. R.</creatorcontrib><creatorcontrib>Stafford, R. J.</creatorcontrib><creatorcontrib>Bankson, J. A.</creatorcontrib><creatorcontrib>Sershen, S. R.</creatorcontrib><creatorcontrib>Rivera, B.</creatorcontrib><creatorcontrib>Price, R. E.</creatorcontrib><creatorcontrib>Hazle, J. D.</creatorcontrib><creatorcontrib>Halas, N. J.</creatorcontrib><creatorcontrib>West, J. L.</creatorcontrib><title>Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (ΔT = 37.4 ± 6.6° C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (ΔT < 10° C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Line, Tumor</subject><subject>Cell membranes</subject><subject>Colloids</subject><subject>Dyes</subject><subject>Female</subject><subject>Gold - chemistry</subject><subject>Histology</subject><subject>Humans</subject><subject>Hyperthermia, Induced</subject><subject>Infrared Rays</subject><subject>Lasers</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Models, Statistical</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Neoplasms - therapy</subject><subject>Particle resonance</subject><subject>Silicon - chemistry</subject><subject>Temperature</subject><subject>Tissues</subject><subject>Tumors</subject><subject>Viability</subject><subject>Yield point</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EokvhzAWhiAMSh7Tjj_jjwAFVpVRqi4SWG5Ll2E43q8Te2glq_3u87KoLXDiN7fm90fM8hF5jOMEg6OkmmHxCCCVMKAzwBC0wKFxzpuApWgAQUUtG2BF6kfMaAFQj4Tk6wqxRQmC1QD9uTIh55YehvvauN5N31Y03qb4MXTKp3JYrn0Yz_K5m81DFrlrOY0y5moPzqbo2t8FPva2--RyDCdZXF3PvtoeX6Flnhuxf7esx-v75fHn2pb76enF59umqtg3HU00ZJ7xVHBxRvrMtc8WoIJ31rhgmnZLct7YRrWltBy3lUgIpTw4kZa6x9Bh93M3dzO3onfVhSmbQm9SPJj3oaHr9dyf0K30bf2rCqWxw0b_f61O8m32e9NhnW3Zigo9z1gJTAY3kBXz3D7iOcwrlb5oAZgCc0wKd7iCbYs7Jd49GMOhtanqbmj6kVhRv__R_4PcxFeDDHtgqD-NAE6oxbZjS3TwMk7-fClv9hy3Imx2yzlNMjwzFTGIh6C86frZ3</recordid><startdate>20031111</startdate><enddate>20031111</enddate><creator>Hirsch, L. R.</creator><creator>Stafford, R. J.</creator><creator>Bankson, J. A.</creator><creator>Sershen, S. R.</creator><creator>Rivera, B.</creator><creator>Price, R. E.</creator><creator>Hazle, J. D.</creator><creator>Halas, N. J.</creator><creator>West, J. L.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031111</creationdate><title>Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance</title><author>Hirsch, L. R. ; Stafford, R. J. ; Bankson, J. A. ; Sershen, S. R. ; Rivera, B. ; Price, R. E. ; Hazle, J. D. ; Halas, N. J. ; West, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-34626b960d29efcb4d00972fced0952f986ebc57babcf0b3688026ebd0834d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Line, Tumor</topic><topic>Cell membranes</topic><topic>Colloids</topic><topic>Dyes</topic><topic>Female</topic><topic>Gold - chemistry</topic><topic>Histology</topic><topic>Humans</topic><topic>Hyperthermia, Induced</topic><topic>Infrared Rays</topic><topic>Lasers</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Models, Statistical</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Neoplasms - therapy</topic><topic>Particle resonance</topic><topic>Silicon - chemistry</topic><topic>Temperature</topic><topic>Tissues</topic><topic>Tumors</topic><topic>Viability</topic><topic>Yield point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirsch, L. R.</creatorcontrib><creatorcontrib>Stafford, R. J.</creatorcontrib><creatorcontrib>Bankson, J. A.</creatorcontrib><creatorcontrib>Sershen, S. R.</creatorcontrib><creatorcontrib>Rivera, B.</creatorcontrib><creatorcontrib>Price, R. E.</creatorcontrib><creatorcontrib>Hazle, J. D.</creatorcontrib><creatorcontrib>Halas, N. J.</creatorcontrib><creatorcontrib>West, J. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirsch, L. R.</au><au>Stafford, R. J.</au><au>Bankson, J. A.</au><au>Sershen, S. R.</au><au>Rivera, B.</au><au>Price, R. E.</au><au>Hazle, J. D.</au><au>Halas, N. J.</au><au>West, J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-11-11</date><risdate>2003</risdate><volume>100</volume><issue>23</issue><spage>13549</spage><epage>13554</epage><pages>13549-13554</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (ΔT = 37.4 ± 6.6° C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (ΔT < 10° C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14597719</pmid><doi>10.1073/pnas.2232479100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (23), p.13549-13554 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_14597719 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Cell Line, Tumor Cell membranes Colloids Dyes Female Gold - chemistry Histology Humans Hyperthermia, Induced Infrared Rays Lasers Magnetic Resonance Imaging Magnetic Resonance Spectroscopy - methods Medical imaging Medical research Mice Mice, SCID Models, Statistical Nanoparticles Nanotechnology Neoplasms - therapy Particle resonance Silicon - chemistry Temperature Tissues Tumors Viability Yield point |
title | Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T09%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoshell-Mediated%20Near-Infrared%20Thermal%20Therapy%20of%20Tumors%20under%20Magnetic%20Resonance%20Guidance&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hirsch,%20L.%20R.&rft.date=2003-11-11&rft.volume=100&rft.issue=23&rft.spage=13549&rft.epage=13554&rft.pages=13549-13554&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2232479100&rft_dat=%3Cjstor_pubme%3E3148177%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201400663&rft_id=info:pmid/14597719&rft_jstor_id=3148177&rfr_iscdi=true |