Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance

Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-11, Vol.100 (23), p.13549-13554
Hauptverfasser: Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., Hazle, J. D., Halas, N. J., West, J. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13554
container_issue 23
container_start_page 13549
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Hirsch, L. R.
Stafford, R. J.
Bankson, J. A.
Sershen, S. R.
Rivera, B.
Price, R. E.
Hazle, J. D.
Halas, N. J.
West, J. L.
description Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (ΔT = 37.4 ± 6.6° C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (ΔT < 10° C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.
doi_str_mv 10.1073/pnas.2232479100
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_14597719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148177</jstor_id><sourcerecordid>3148177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-34626b960d29efcb4d00972fced0952f986ebc57babcf0b3688026ebd0834d5c3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhzAWhiAMSh7Tjj_jjwAFVpVRqi4SWG5Ll2E43q8Te2glq_3u87KoLXDiN7fm90fM8hF5jOMEg6OkmmHxCCCVMKAzwBC0wKFxzpuApWgAQUUtG2BF6kfMaAFQj4Tk6wqxRQmC1QD9uTIh55YehvvauN5N31Y03qb4MXTKp3JYrn0Yz_K5m81DFrlrOY0y5moPzqbo2t8FPva2--RyDCdZXF3PvtoeX6Flnhuxf7esx-v75fHn2pb76enF59umqtg3HU00ZJ7xVHBxRvrMtc8WoIJ31rhgmnZLct7YRrWltBy3lUgIpTw4kZa6x9Bh93M3dzO3onfVhSmbQm9SPJj3oaHr9dyf0K30bf2rCqWxw0b_f61O8m32e9NhnW3Zigo9z1gJTAY3kBXz3D7iOcwrlb5oAZgCc0wKd7iCbYs7Jd49GMOhtanqbmj6kVhRv__R_4PcxFeDDHtgqD-NAE6oxbZjS3TwMk7-fClv9hy3Imx2yzlNMjwzFTGIh6C86frZ3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201400663</pqid></control><display><type>article</type><title>Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hirsch, L. R. ; Stafford, R. J. ; Bankson, J. A. ; Sershen, S. R. ; Rivera, B. ; Price, R. E. ; Hazle, J. D. ; Halas, N. J. ; West, J. L.</creator><creatorcontrib>Hirsch, L. R. ; Stafford, R. J. ; Bankson, J. A. ; Sershen, S. R. ; Rivera, B. ; Price, R. E. ; Hazle, J. D. ; Halas, N. J. ; West, J. L.</creatorcontrib><description>Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (ΔT = 37.4 ± 6.6° C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (ΔT &lt; 10° C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2232479100</identifier><identifier>PMID: 14597719</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Cell Line, Tumor ; Cell membranes ; Colloids ; Dyes ; Female ; Gold - chemistry ; Histology ; Humans ; Hyperthermia, Induced ; Infrared Rays ; Lasers ; Magnetic Resonance Imaging ; Magnetic Resonance Spectroscopy - methods ; Medical imaging ; Medical research ; Mice ; Mice, SCID ; Models, Statistical ; Nanoparticles ; Nanotechnology ; Neoplasms - therapy ; Particle resonance ; Silicon - chemistry ; Temperature ; Tissues ; Tumors ; Viability ; Yield point</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (23), p.13549-13554</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 11, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-34626b960d29efcb4d00972fced0952f986ebc57babcf0b3688026ebd0834d5c3</citedby><cites>FETCH-LOGICAL-c561t-34626b960d29efcb4d00972fced0952f986ebc57babcf0b3688026ebd0834d5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148177$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148177$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27933,27934,53800,53802,58026,58259</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14597719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirsch, L. R.</creatorcontrib><creatorcontrib>Stafford, R. J.</creatorcontrib><creatorcontrib>Bankson, J. A.</creatorcontrib><creatorcontrib>Sershen, S. R.</creatorcontrib><creatorcontrib>Rivera, B.</creatorcontrib><creatorcontrib>Price, R. E.</creatorcontrib><creatorcontrib>Hazle, J. D.</creatorcontrib><creatorcontrib>Halas, N. J.</creatorcontrib><creatorcontrib>West, J. L.</creatorcontrib><title>Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (ΔT = 37.4 ± 6.6° C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (ΔT &lt; 10° C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell Line, Tumor</subject><subject>Cell membranes</subject><subject>Colloids</subject><subject>Dyes</subject><subject>Female</subject><subject>Gold - chemistry</subject><subject>Histology</subject><subject>Humans</subject><subject>Hyperthermia, Induced</subject><subject>Infrared Rays</subject><subject>Lasers</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Mice</subject><subject>Mice, SCID</subject><subject>Models, Statistical</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Neoplasms - therapy</subject><subject>Particle resonance</subject><subject>Silicon - chemistry</subject><subject>Temperature</subject><subject>Tissues</subject><subject>Tumors</subject><subject>Viability</subject><subject>Yield point</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EokvhzAWhiAMSh7Tjj_jjwAFVpVRqi4SWG5Ll2E43q8Te2glq_3u87KoLXDiN7fm90fM8hF5jOMEg6OkmmHxCCCVMKAzwBC0wKFxzpuApWgAQUUtG2BF6kfMaAFQj4Tk6wqxRQmC1QD9uTIh55YehvvauN5N31Y03qb4MXTKp3JYrn0Yz_K5m81DFrlrOY0y5moPzqbo2t8FPva2--RyDCdZXF3PvtoeX6Flnhuxf7esx-v75fHn2pb76enF59umqtg3HU00ZJ7xVHBxRvrMtc8WoIJ31rhgmnZLct7YRrWltBy3lUgIpTw4kZa6x9Bh93M3dzO3onfVhSmbQm9SPJj3oaHr9dyf0K30bf2rCqWxw0b_f61O8m32e9NhnW3Zigo9z1gJTAY3kBXz3D7iOcwrlb5oAZgCc0wKd7iCbYs7Jd49GMOhtanqbmj6kVhRv__R_4PcxFeDDHtgqD-NAE6oxbZjS3TwMk7-fClv9hy3Imx2yzlNMjwzFTGIh6C86frZ3</recordid><startdate>20031111</startdate><enddate>20031111</enddate><creator>Hirsch, L. R.</creator><creator>Stafford, R. J.</creator><creator>Bankson, J. A.</creator><creator>Sershen, S. R.</creator><creator>Rivera, B.</creator><creator>Price, R. E.</creator><creator>Hazle, J. D.</creator><creator>Halas, N. J.</creator><creator>West, J. L.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20031111</creationdate><title>Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance</title><author>Hirsch, L. R. ; Stafford, R. J. ; Bankson, J. A. ; Sershen, S. R. ; Rivera, B. ; Price, R. E. ; Hazle, J. D. ; Halas, N. J. ; West, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-34626b960d29efcb4d00972fced0952f986ebc57babcf0b3688026ebd0834d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell Line, Tumor</topic><topic>Cell membranes</topic><topic>Colloids</topic><topic>Dyes</topic><topic>Female</topic><topic>Gold - chemistry</topic><topic>Histology</topic><topic>Humans</topic><topic>Hyperthermia, Induced</topic><topic>Infrared Rays</topic><topic>Lasers</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Mice</topic><topic>Mice, SCID</topic><topic>Models, Statistical</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Neoplasms - therapy</topic><topic>Particle resonance</topic><topic>Silicon - chemistry</topic><topic>Temperature</topic><topic>Tissues</topic><topic>Tumors</topic><topic>Viability</topic><topic>Yield point</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirsch, L. R.</creatorcontrib><creatorcontrib>Stafford, R. J.</creatorcontrib><creatorcontrib>Bankson, J. A.</creatorcontrib><creatorcontrib>Sershen, S. R.</creatorcontrib><creatorcontrib>Rivera, B.</creatorcontrib><creatorcontrib>Price, R. E.</creatorcontrib><creatorcontrib>Hazle, J. D.</creatorcontrib><creatorcontrib>Halas, N. J.</creatorcontrib><creatorcontrib>West, J. L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirsch, L. R.</au><au>Stafford, R. J.</au><au>Bankson, J. A.</au><au>Sershen, S. R.</au><au>Rivera, B.</au><au>Price, R. E.</au><au>Hazle, J. D.</au><au>Halas, N. J.</au><au>West, J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-11-11</date><risdate>2003</risdate><volume>100</volume><issue>23</issue><spage>13549</spage><epage>13554</epage><pages>13549-13554</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (ΔT = 37.4 ± 6.6° C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (ΔT &lt; 10° C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14597719</pmid><doi>10.1073/pnas.2232479100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (23), p.13549-13554
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_14597719
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Cell Line, Tumor
Cell membranes
Colloids
Dyes
Female
Gold - chemistry
Histology
Humans
Hyperthermia, Induced
Infrared Rays
Lasers
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy - methods
Medical imaging
Medical research
Mice
Mice, SCID
Models, Statistical
Nanoparticles
Nanotechnology
Neoplasms - therapy
Particle resonance
Silicon - chemistry
Temperature
Tissues
Tumors
Viability
Yield point
title Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T09%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoshell-Mediated%20Near-Infrared%20Thermal%20Therapy%20of%20Tumors%20under%20Magnetic%20Resonance%20Guidance&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hirsch,%20L.%20R.&rft.date=2003-11-11&rft.volume=100&rft.issue=23&rft.spage=13549&rft.epage=13554&rft.pages=13549-13554&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2232479100&rft_dat=%3Cjstor_pubme%3E3148177%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201400663&rft_id=info:pmid/14597719&rft_jstor_id=3148177&rfr_iscdi=true