Calcium-Dependent Molecular Spring Elements in the Giant Protein Titin

Titin (also known as connectin) is a giant protein with a wide range of cellular functions, including providing muscle cells with elasticity. Its physiological extension is largely derived from the PEVK segment, rich in proline (P), glutamate (E), valine (V), and lysine (K) residues. We studied reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-11, Vol.100 (23), p.13716-13721
Hauptverfasser: Labeit, Dietmar, Watanabe, Kaori, Witt, Christian, Fujita, Hideaki, Wu, Yiming, Lahmers, Sunshine, Funck, Theodor, Labeit, Siegfried, Granzier, Henk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13721
container_issue 23
container_start_page 13716
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Labeit, Dietmar
Watanabe, Kaori
Witt, Christian
Fujita, Hideaki
Wu, Yiming
Lahmers, Sunshine
Funck, Theodor
Labeit, Siegfried
Granzier, Henk
description Titin (also known as connectin) is a giant protein with a wide range of cellular functions, including providing muscle cells with elasticity. Its physiological extension is largely derived from the PEVK segment, rich in proline (P), glutamate (E), valine (V), and lysine (K) residues. We studied recombinant PEVK molecules containing the two conserved elements: ≈28-residue PEVK repeats and E-rich motifs. Single molecule experiments revealed that calcium-induced conformational changes reduce the bending rigidity of the PEVK fragments, and site-directed mutagenesis identified four glutamate residues in the E-rich motif that was studied (exon 129), as critical for this process. Experiments with muscle fibers showed that titin-based tension is calcium responsive. We propose that the PEVK segment contains E-rich motifs that render titin a calcium-dependent molecular spring that adapts to the physiological state of the cell.
doi_str_mv 10.1073/pnas.2235652100
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_14593205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148205</jstor_id><sourcerecordid>3148205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-16d6d53cbcfde6f7cee62ef78d9608aad34dc824f40f86f2209dbda95a9ad8473</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agil2rZy8igwfBw7QvPyc5eJC1rUJFwXoO2STTzpLJrElG9L83wy5d9eIpkPd5L9_wEHqO4QxDR8930eQzQigXnGCAB2iFQeFWMAUP0QqAdK1khJ2gJzlvAUBxCY_RCWZcUQJ8hS7XJthhHtv3fuej87E0n6bg7RxMar7u0hBvm4vgx1rIzRCbcuebq8FU9iVNxdebm6EM8Sl61JuQ_bPDeYq-XV7crD-015-vPq7fXbeWK1JaLJxwnNqN7Z0XfWe9F8T3nXRKgDTGUeasJKxn0EvREwLKbZxR3CjjJOvoKXq7n7ubN6N3tsZKJuiaczTpl57MoP-uxOFO304_NBFUdqr2vz70p-n77HPR45CtD8FEP81ZY0W47PACX_0Dt9OcYv2bJoAZo0AXdL5HNk05J9_fB8Ggl_3oZT_6uJ_a8fLP_Ed_WEgFzQEsncdxoAnVmHZYVPLmP0T3cwjF_yzVvtjbbS5TuscUM7m89htA167p</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201443039</pqid></control><display><type>article</type><title>Calcium-Dependent Molecular Spring Elements in the Giant Protein Titin</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Labeit, Dietmar ; Watanabe, Kaori ; Witt, Christian ; Fujita, Hideaki ; Wu, Yiming ; Lahmers, Sunshine ; Funck, Theodor ; Labeit, Siegfried ; Granzier, Henk</creator><creatorcontrib>Labeit, Dietmar ; Watanabe, Kaori ; Witt, Christian ; Fujita, Hideaki ; Wu, Yiming ; Lahmers, Sunshine ; Funck, Theodor ; Labeit, Siegfried ; Granzier, Henk</creatorcontrib><description>Titin (also known as connectin) is a giant protein with a wide range of cellular functions, including providing muscle cells with elasticity. Its physiological extension is largely derived from the PEVK segment, rich in proline (P), glutamate (E), valine (V), and lysine (K) residues. We studied recombinant PEVK molecules containing the two conserved elements: ≈28-residue PEVK repeats and E-rich motifs. Single molecule experiments revealed that calcium-induced conformational changes reduce the bending rigidity of the PEVK fragments, and site-directed mutagenesis identified four glutamate residues in the E-rich motif that was studied (exon 129), as critical for this process. Experiments with muscle fibers showed that titin-based tension is calcium responsive. We propose that the PEVK segment contains E-rich motifs that render titin a calcium-dependent molecular spring that adapts to the physiological state of the cell.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2235652100</identifier><identifier>PMID: 14593205</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Anatomy &amp; physiology ; Biological Sciences ; Calcium ; Calcium - metabolism ; Cantilevers ; Connectin ; Emission spectra ; Exons ; Fluorescence ; Gene Deletion ; Glutamic Acid - chemistry ; Histograms ; Humans ; Lysine - chemistry ; Molecular biology ; Molecular Sequence Data ; Molecules ; Muscle Proteins - chemistry ; Muscles - metabolism ; Mutagenesis, Site-Directed ; Proline - chemistry ; Protein Conformation ; Protein Kinases - chemistry ; Proteins ; Recombinant Proteins - chemistry ; Sarcomeres ; Sequence Homology, Amino Acid ; Spectrometry, Fluorescence ; Ultrasonics ; Valine - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (23), p.13716-13721</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 11, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-16d6d53cbcfde6f7cee62ef78d9608aad34dc824f40f86f2209dbda95a9ad8473</citedby><cites>FETCH-LOGICAL-c592t-16d6d53cbcfde6f7cee62ef78d9608aad34dc824f40f86f2209dbda95a9ad8473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148205$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148205$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14593205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Labeit, Dietmar</creatorcontrib><creatorcontrib>Watanabe, Kaori</creatorcontrib><creatorcontrib>Witt, Christian</creatorcontrib><creatorcontrib>Fujita, Hideaki</creatorcontrib><creatorcontrib>Wu, Yiming</creatorcontrib><creatorcontrib>Lahmers, Sunshine</creatorcontrib><creatorcontrib>Funck, Theodor</creatorcontrib><creatorcontrib>Labeit, Siegfried</creatorcontrib><creatorcontrib>Granzier, Henk</creatorcontrib><title>Calcium-Dependent Molecular Spring Elements in the Giant Protein Titin</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Titin (also known as connectin) is a giant protein with a wide range of cellular functions, including providing muscle cells with elasticity. Its physiological extension is largely derived from the PEVK segment, rich in proline (P), glutamate (E), valine (V), and lysine (K) residues. We studied recombinant PEVK molecules containing the two conserved elements: ≈28-residue PEVK repeats and E-rich motifs. Single molecule experiments revealed that calcium-induced conformational changes reduce the bending rigidity of the PEVK fragments, and site-directed mutagenesis identified four glutamate residues in the E-rich motif that was studied (exon 129), as critical for this process. Experiments with muscle fibers showed that titin-based tension is calcium responsive. We propose that the PEVK segment contains E-rich motifs that render titin a calcium-dependent molecular spring that adapts to the physiological state of the cell.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Anatomy &amp; physiology</subject><subject>Biological Sciences</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Cantilevers</subject><subject>Connectin</subject><subject>Emission spectra</subject><subject>Exons</subject><subject>Fluorescence</subject><subject>Gene Deletion</subject><subject>Glutamic Acid - chemistry</subject><subject>Histograms</subject><subject>Humans</subject><subject>Lysine - chemistry</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Muscle Proteins - chemistry</subject><subject>Muscles - metabolism</subject><subject>Mutagenesis, Site-Directed</subject><subject>Proline - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Kinases - chemistry</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Sarcomeres</subject><subject>Sequence Homology, Amino Acid</subject><subject>Spectrometry, Fluorescence</subject><subject>Ultrasonics</subject><subject>Valine - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_Agil2rZy8igwfBw7QvPyc5eJC1rUJFwXoO2STTzpLJrElG9L83wy5d9eIpkPd5L9_wEHqO4QxDR8930eQzQigXnGCAB2iFQeFWMAUP0QqAdK1khJ2gJzlvAUBxCY_RCWZcUQJ8hS7XJthhHtv3fuej87E0n6bg7RxMar7u0hBvm4vgx1rIzRCbcuebq8FU9iVNxdebm6EM8Sl61JuQ_bPDeYq-XV7crD-015-vPq7fXbeWK1JaLJxwnNqN7Z0XfWe9F8T3nXRKgDTGUeasJKxn0EvREwLKbZxR3CjjJOvoKXq7n7ubN6N3tsZKJuiaczTpl57MoP-uxOFO304_NBFUdqr2vz70p-n77HPR45CtD8FEP81ZY0W47PACX_0Dt9OcYv2bJoAZo0AXdL5HNk05J9_fB8Ggl_3oZT_6uJ_a8fLP_Ed_WEgFzQEsncdxoAnVmHZYVPLmP0T3cwjF_yzVvtjbbS5TuscUM7m89htA167p</recordid><startdate>20031111</startdate><enddate>20031111</enddate><creator>Labeit, Dietmar</creator><creator>Watanabe, Kaori</creator><creator>Witt, Christian</creator><creator>Fujita, Hideaki</creator><creator>Wu, Yiming</creator><creator>Lahmers, Sunshine</creator><creator>Funck, Theodor</creator><creator>Labeit, Siegfried</creator><creator>Granzier, Henk</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20031111</creationdate><title>Calcium-Dependent Molecular Spring Elements in the Giant Protein Titin</title><author>Labeit, Dietmar ; Watanabe, Kaori ; Witt, Christian ; Fujita, Hideaki ; Wu, Yiming ; Lahmers, Sunshine ; Funck, Theodor ; Labeit, Siegfried ; Granzier, Henk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-16d6d53cbcfde6f7cee62ef78d9608aad34dc824f40f86f2209dbda95a9ad8473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Anatomy &amp; physiology</topic><topic>Biological Sciences</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Cantilevers</topic><topic>Connectin</topic><topic>Emission spectra</topic><topic>Exons</topic><topic>Fluorescence</topic><topic>Gene Deletion</topic><topic>Glutamic Acid - chemistry</topic><topic>Histograms</topic><topic>Humans</topic><topic>Lysine - chemistry</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Muscle Proteins - chemistry</topic><topic>Muscles - metabolism</topic><topic>Mutagenesis, Site-Directed</topic><topic>Proline - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Kinases - chemistry</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Sarcomeres</topic><topic>Sequence Homology, Amino Acid</topic><topic>Spectrometry, Fluorescence</topic><topic>Ultrasonics</topic><topic>Valine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labeit, Dietmar</creatorcontrib><creatorcontrib>Watanabe, Kaori</creatorcontrib><creatorcontrib>Witt, Christian</creatorcontrib><creatorcontrib>Fujita, Hideaki</creatorcontrib><creatorcontrib>Wu, Yiming</creatorcontrib><creatorcontrib>Lahmers, Sunshine</creatorcontrib><creatorcontrib>Funck, Theodor</creatorcontrib><creatorcontrib>Labeit, Siegfried</creatorcontrib><creatorcontrib>Granzier, Henk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labeit, Dietmar</au><au>Watanabe, Kaori</au><au>Witt, Christian</au><au>Fujita, Hideaki</au><au>Wu, Yiming</au><au>Lahmers, Sunshine</au><au>Funck, Theodor</au><au>Labeit, Siegfried</au><au>Granzier, Henk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium-Dependent Molecular Spring Elements in the Giant Protein Titin</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-11-11</date><risdate>2003</risdate><volume>100</volume><issue>23</issue><spage>13716</spage><epage>13721</epage><pages>13716-13721</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Titin (also known as connectin) is a giant protein with a wide range of cellular functions, including providing muscle cells with elasticity. Its physiological extension is largely derived from the PEVK segment, rich in proline (P), glutamate (E), valine (V), and lysine (K) residues. We studied recombinant PEVK molecules containing the two conserved elements: ≈28-residue PEVK repeats and E-rich motifs. Single molecule experiments revealed that calcium-induced conformational changes reduce the bending rigidity of the PEVK fragments, and site-directed mutagenesis identified four glutamate residues in the E-rich motif that was studied (exon 129), as critical for this process. Experiments with muscle fibers showed that titin-based tension is calcium responsive. We propose that the PEVK segment contains E-rich motifs that render titin a calcium-dependent molecular spring that adapts to the physiological state of the cell.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14593205</pmid><doi>10.1073/pnas.2235652100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (23), p.13716-13721
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_14593205
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Motifs
Amino Acid Sequence
Anatomy & physiology
Biological Sciences
Calcium
Calcium - metabolism
Cantilevers
Connectin
Emission spectra
Exons
Fluorescence
Gene Deletion
Glutamic Acid - chemistry
Histograms
Humans
Lysine - chemistry
Molecular biology
Molecular Sequence Data
Molecules
Muscle Proteins - chemistry
Muscles - metabolism
Mutagenesis, Site-Directed
Proline - chemistry
Protein Conformation
Protein Kinases - chemistry
Proteins
Recombinant Proteins - chemistry
Sarcomeres
Sequence Homology, Amino Acid
Spectrometry, Fluorescence
Ultrasonics
Valine - chemistry
title Calcium-Dependent Molecular Spring Elements in the Giant Protein Titin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T05%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium-Dependent%20Molecular%20Spring%20Elements%20in%20the%20Giant%20Protein%20Titin&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Labeit,%20Dietmar&rft.date=2003-11-11&rft.volume=100&rft.issue=23&rft.spage=13716&rft.epage=13721&rft.pages=13716-13721&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2235652100&rft_dat=%3Cjstor_pubme%3E3148205%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201443039&rft_id=info:pmid/14593205&rft_jstor_id=3148205&rfr_iscdi=true