A Universal Model for Spike-Frequency Adaptation
Spike-frequency adaptation is a prominent feature of neural dynamics. Among other mechanisms, various ionic currents modulating spike generation cause this type of neural adaptation. Prominent examples are voltage-gated potassium currents (M-type currents), the interplay of calcium currents and intr...
Gespeichert in:
Veröffentlicht in: | Neural computation 2003-11, Vol.15 (11), p.2523-2564 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2564 |
---|---|
container_issue | 11 |
container_start_page | 2523 |
container_title | Neural computation |
container_volume | 15 |
creator | Benda, Jan Herz, Andreas V. M. |
description | Spike-frequency adaptation is a prominent feature of neural dynamics. Among other mechanisms, various ionic currents modulating spike generation cause this type of neural adaptation. Prominent examples are voltage-gated potassium currents (M-type currents), the interplay of calcium currents and intracellular calcium dynamics with calcium-gated potassium channels (AHP-type currents), and the slow recovery from inactivation of the fast sodium current. While recent modeling studies have focused on the effects of specific adaptation currents, we derive a universal model for the firing-frequency dynamics of an adapting neuron that is independent of the specific adaptation process and spike generator. The model is completely defined by the neuron's onset
-I curve, the steady-state
-I curve, and the time constant of adaptation. For a specific neuron, these parameters can be easily determined from electrophysiological measurements without any pharmacological manipulations. At the same time, the simplicity of the model allows one to analyze mathematically how adaptation influences signal processing on the single-neuron level. In particular, we elucidate the specific nature of high-pass filter properties caused by spike-frequency adaptation. The model is limited to firing frequencies higher than the reciprocal adaptation time constant and to moderate fluctuations of the adaptation and the input current. As an extension of the model, we introduce a framework for combining an arbitrary spike generator with a generalized adaptation current. |
doi_str_mv | 10.1162/089976603322385063 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_14577853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71303594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-258a996f516a7ec9ffc83d08767e1bb42908873355d0b5c58398f65f2a2492073</originalsourceid><addsrcrecordid>eNqF0E1Lw0AQBuBFFFurf8CD5KK31Nnd7NexFKtCxYMWvIXNZhdS8-VuIvTfm9JAD4Ke5vLMO8OL0DWGOcac3INUSnAOlBJCJQNOT9AUMwqxlPLjFE33IB6EmKCLELYAwDGwczTBCRNCMjpFsIg2dfFtfdBl9NLktoxc46O3tvi08crbr97WZhctct12uiua-hKdOV0GezXOGdqsHt6XT_H69fF5uVjHhoHqYsKkVoo7hrkW1ijnjKQ5SMGFxVmWEAVSCkoZyyFjhkmqpOPMEU0SRUDQGbo75La-GZ4IXVoVwdiy1LVt-pAKTIEylfwLscKSYSUHSA7Q-CYEb13a-qLSfpdiSPeFpr8LHZZuxvQ-q2x-XBkbHMDtCHQwunRe16YIR8cGSfDezQ-uKrp02_S-Htr76_IPjqiHaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19185198</pqid></control><display><type>article</type><title>A Universal Model for Spike-Frequency Adaptation</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Benda, Jan ; Herz, Andreas V. M.</creator><creatorcontrib>Benda, Jan ; Herz, Andreas V. M.</creatorcontrib><description>Spike-frequency adaptation is a prominent feature of neural dynamics. Among other mechanisms, various ionic currents modulating spike generation cause this type of neural adaptation. Prominent examples are voltage-gated potassium currents (M-type currents), the interplay of calcium currents and intracellular calcium dynamics with calcium-gated potassium channels (AHP-type currents), and the slow recovery from inactivation of the fast sodium current. While recent modeling studies have focused on the effects of specific adaptation currents, we derive a universal model for the firing-frequency dynamics of an adapting neuron that is independent of the specific adaptation process and spike generator. The model is completely defined by the neuron's onset
-I curve, the steady-state
-I curve, and the time constant of adaptation. For a specific neuron, these parameters can be easily determined from electrophysiological measurements without any pharmacological manipulations. At the same time, the simplicity of the model allows one to analyze mathematically how adaptation influences signal processing on the single-neuron level. In particular, we elucidate the specific nature of high-pass filter properties caused by spike-frequency adaptation. The model is limited to firing frequencies higher than the reciprocal adaptation time constant and to moderate fluctuations of the adaptation and the input current. As an extension of the model, we introduce a framework for combining an arbitrary spike generator with a generalized adaptation current.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/089976603322385063</identifier><identifier>PMID: 14577853</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Action Potentials - physiology ; Adaptation, Physiological - physiology ; Biological and medical sciences ; Fundamental and applied biological sciences. Psychology ; General aspects. Models. Methods ; Letters ; Models, Neurological ; Vertebrates: nervous system and sense organs</subject><ispartof>Neural computation, 2003-11, Vol.15 (11), p.2523-2564</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-258a996f516a7ec9ffc83d08767e1bb42908873355d0b5c58398f65f2a2492073</citedby><cites>FETCH-LOGICAL-c509t-258a996f516a7ec9ffc83d08767e1bb42908873355d0b5c58398f65f2a2492073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/089976603322385063$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,53987,53988</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15145213$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14577853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Benda, Jan</creatorcontrib><creatorcontrib>Herz, Andreas V. M.</creatorcontrib><title>A Universal Model for Spike-Frequency Adaptation</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>Spike-frequency adaptation is a prominent feature of neural dynamics. Among other mechanisms, various ionic currents modulating spike generation cause this type of neural adaptation. Prominent examples are voltage-gated potassium currents (M-type currents), the interplay of calcium currents and intracellular calcium dynamics with calcium-gated potassium channels (AHP-type currents), and the slow recovery from inactivation of the fast sodium current. While recent modeling studies have focused on the effects of specific adaptation currents, we derive a universal model for the firing-frequency dynamics of an adapting neuron that is independent of the specific adaptation process and spike generator. The model is completely defined by the neuron's onset
-I curve, the steady-state
-I curve, and the time constant of adaptation. For a specific neuron, these parameters can be easily determined from electrophysiological measurements without any pharmacological manipulations. At the same time, the simplicity of the model allows one to analyze mathematically how adaptation influences signal processing on the single-neuron level. In particular, we elucidate the specific nature of high-pass filter properties caused by spike-frequency adaptation. The model is limited to firing frequencies higher than the reciprocal adaptation time constant and to moderate fluctuations of the adaptation and the input current. As an extension of the model, we introduce a framework for combining an arbitrary spike generator with a generalized adaptation current.</description><subject>Action Potentials - physiology</subject><subject>Adaptation, Physiological - physiology</subject><subject>Biological and medical sciences</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Models. Methods</subject><subject>Letters</subject><subject>Models, Neurological</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1Lw0AQBuBFFFurf8CD5KK31Nnd7NexFKtCxYMWvIXNZhdS8-VuIvTfm9JAD4Ke5vLMO8OL0DWGOcac3INUSnAOlBJCJQNOT9AUMwqxlPLjFE33IB6EmKCLELYAwDGwczTBCRNCMjpFsIg2dfFtfdBl9NLktoxc46O3tvi08crbr97WZhctct12uiua-hKdOV0GezXOGdqsHt6XT_H69fF5uVjHhoHqYsKkVoo7hrkW1ijnjKQ5SMGFxVmWEAVSCkoZyyFjhkmqpOPMEU0SRUDQGbo75La-GZ4IXVoVwdiy1LVt-pAKTIEylfwLscKSYSUHSA7Q-CYEb13a-qLSfpdiSPeFpr8LHZZuxvQ-q2x-XBkbHMDtCHQwunRe16YIR8cGSfDezQ-uKrp02_S-Htr76_IPjqiHaA</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Benda, Jan</creator><creator>Herz, Andreas V. M.</creator><general>MIT Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20031101</creationdate><title>A Universal Model for Spike-Frequency Adaptation</title><author>Benda, Jan ; Herz, Andreas V. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-258a996f516a7ec9ffc83d08767e1bb42908873355d0b5c58398f65f2a2492073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Action Potentials - physiology</topic><topic>Adaptation, Physiological - physiology</topic><topic>Biological and medical sciences</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Models. Methods</topic><topic>Letters</topic><topic>Models, Neurological</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benda, Jan</creatorcontrib><creatorcontrib>Herz, Andreas V. M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benda, Jan</au><au>Herz, Andreas V. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Universal Model for Spike-Frequency Adaptation</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2003-11-01</date><risdate>2003</risdate><volume>15</volume><issue>11</issue><spage>2523</spage><epage>2564</epage><pages>2523-2564</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>Spike-frequency adaptation is a prominent feature of neural dynamics. Among other mechanisms, various ionic currents modulating spike generation cause this type of neural adaptation. Prominent examples are voltage-gated potassium currents (M-type currents), the interplay of calcium currents and intracellular calcium dynamics with calcium-gated potassium channels (AHP-type currents), and the slow recovery from inactivation of the fast sodium current. While recent modeling studies have focused on the effects of specific adaptation currents, we derive a universal model for the firing-frequency dynamics of an adapting neuron that is independent of the specific adaptation process and spike generator. The model is completely defined by the neuron's onset
-I curve, the steady-state
-I curve, and the time constant of adaptation. For a specific neuron, these parameters can be easily determined from electrophysiological measurements without any pharmacological manipulations. At the same time, the simplicity of the model allows one to analyze mathematically how adaptation influences signal processing on the single-neuron level. In particular, we elucidate the specific nature of high-pass filter properties caused by spike-frequency adaptation. The model is limited to firing frequencies higher than the reciprocal adaptation time constant and to moderate fluctuations of the adaptation and the input current. As an extension of the model, we introduce a framework for combining an arbitrary spike generator with a generalized adaptation current.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>14577853</pmid><doi>10.1162/089976603322385063</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2003-11, Vol.15 (11), p.2523-2564 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_pubmed_primary_14577853 |
source | MEDLINE; MIT Press Journals |
subjects | Action Potentials - physiology Adaptation, Physiological - physiology Biological and medical sciences Fundamental and applied biological sciences. Psychology General aspects. Models. Methods Letters Models, Neurological Vertebrates: nervous system and sense organs |
title | A Universal Model for Spike-Frequency Adaptation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T14%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Universal%20Model%20for%20Spike-Frequency%20Adaptation&rft.jtitle=Neural%20computation&rft.au=Benda,%20Jan&rft.date=2003-11-01&rft.volume=15&rft.issue=11&rft.spage=2523&rft.epage=2564&rft.pages=2523-2564&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/089976603322385063&rft_dat=%3Cproquest_pubme%3E71303594%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19185198&rft_id=info:pmid/14577853&rfr_iscdi=true |