IMRT delivery verification using a spiral phantom
In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT t...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2003-09, Vol.30 (9), p.2553-2558 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2558 |
---|---|
container_issue | 9 |
container_start_page | 2553 |
container_title | Medical physics (Lancaster) |
container_volume | 30 |
creator | Richardson, Susan L. Tomé, Wolfgang A. Orton, Nigel P. McNutt, Todd R. Paliwal, Bhudatt R. |
description | In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan. |
doi_str_mv | 10.1118/1.1603965 |
format | Article |
fullrecord | <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmed_primary_14528978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP3965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3895-12dfff0f9fcb7cbf7272808b2be6e1a9bf32707dde4c673267f3b4b1fef115023</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgipvTC_-A9Fah85ykbZpLGX4MNhSZ1yVJE410a0m2Sf-90xYVRG9ybp7zct4QcoowRsT8EseYARNZukeGNOEsTiiIfTIEEElME0gH5CiEVwDIWAqHZIBJSnPB8yHB6fxxEZWmclvj22j3OOu0XLt6FW2CWz1HMgqN87KKmhe5WtfLY3JgZRXMST9H5OnmejG5i2f3t9PJ1SzWLBdpjLS01oIVViuuleWU0xxyRZXJDEqhLKMceFmaRGec0YxbphKF1ljEFCgbkfMuV_s6BG9s0Xi3lL4tEIqP2gUWfe2dPetss1FLU37LvucOxB14c5Vp_04q5g994EXng3brz9_42tnW_odvSvsf_n3qO99Ue1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>IMRT delivery verification using a spiral phantom</title><source>MEDLINE</source><source>Wiley Blackwell Single Titles</source><creator>Richardson, Susan L. ; Tomé, Wolfgang A. ; Orton, Nigel P. ; McNutt, Todd R. ; Paliwal, Bhudatt R.</creator><creatorcontrib>Richardson, Susan L. ; Tomé, Wolfgang A. ; Orton, Nigel P. ; McNutt, Todd R. ; Paliwal, Bhudatt R.</creatorcontrib><description>In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1603965</identifier><identifier>PMID: 14528978</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Ancillary equipment ; dosimetry ; Drug delivery ; Error analysis ; Film Dosimetry - instrumentation ; Film Dosimetry - methods ; Film Dosimetry - standards ; Humans ; IMRT ; Intensity modulated radiation therapy ; Neoplasms - radiotherapy ; phantoms ; Phantoms, Imaging - standards ; QA phantoms ; Quality assurance ; Quality assurance in radiotherapy ; quality assurence ; quality control ; radiation therapy ; Radiography ; Radiotherapy Dosage - standards ; Radiotherapy Planning, Computer-Assisted - instrumentation ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy Planning, Computer-Assisted - standards ; Radiotherapy, Conformal - instrumentation ; Radiotherapy, Conformal - methods ; Radiotherapy, Conformal - standards ; Reference Standards ; Reproducibility of Results ; Sensitivity and Specificity ; Subspaces ; Testing procedures ; Thermoluminescent dosimeters ; Thermoluminescent Dosimetry - methods ; United States ; Water quality</subject><ispartof>Medical physics (Lancaster), 2003-09, Vol.30 (9), p.2553-2558</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2003 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3895-12dfff0f9fcb7cbf7272808b2be6e1a9bf32707dde4c673267f3b4b1fef115023</citedby><cites>FETCH-LOGICAL-c3895-12dfff0f9fcb7cbf7272808b2be6e1a9bf32707dde4c673267f3b4b1fef115023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1603965$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1603965$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14528978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Richardson, Susan L.</creatorcontrib><creatorcontrib>Tomé, Wolfgang A.</creatorcontrib><creatorcontrib>Orton, Nigel P.</creatorcontrib><creatorcontrib>McNutt, Todd R.</creatorcontrib><creatorcontrib>Paliwal, Bhudatt R.</creatorcontrib><title>IMRT delivery verification using a spiral phantom</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan.</description><subject>Ancillary equipment</subject><subject>dosimetry</subject><subject>Drug delivery</subject><subject>Error analysis</subject><subject>Film Dosimetry - instrumentation</subject><subject>Film Dosimetry - methods</subject><subject>Film Dosimetry - standards</subject><subject>Humans</subject><subject>IMRT</subject><subject>Intensity modulated radiation therapy</subject><subject>Neoplasms - radiotherapy</subject><subject>phantoms</subject><subject>Phantoms, Imaging - standards</subject><subject>QA phantoms</subject><subject>Quality assurance</subject><subject>Quality assurance in radiotherapy</subject><subject>quality assurence</subject><subject>quality control</subject><subject>radiation therapy</subject><subject>Radiography</subject><subject>Radiotherapy Dosage - standards</subject><subject>Radiotherapy Planning, Computer-Assisted - instrumentation</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy Planning, Computer-Assisted - standards</subject><subject>Radiotherapy, Conformal - instrumentation</subject><subject>Radiotherapy, Conformal - methods</subject><subject>Radiotherapy, Conformal - standards</subject><subject>Reference Standards</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Subspaces</subject><subject>Testing procedures</subject><subject>Thermoluminescent dosimeters</subject><subject>Thermoluminescent Dosimetry - methods</subject><subject>United States</subject><subject>Water quality</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90F1LwzAUBuAgipvTC_-A9Fah85ykbZpLGX4MNhSZ1yVJE410a0m2Sf-90xYVRG9ybp7zct4QcoowRsT8EseYARNZukeGNOEsTiiIfTIEEElME0gH5CiEVwDIWAqHZIBJSnPB8yHB6fxxEZWmclvj22j3OOu0XLt6FW2CWz1HMgqN87KKmhe5WtfLY3JgZRXMST9H5OnmejG5i2f3t9PJ1SzWLBdpjLS01oIVViuuleWU0xxyRZXJDEqhLKMceFmaRGec0YxbphKF1ljEFCgbkfMuV_s6BG9s0Xi3lL4tEIqP2gUWfe2dPetss1FLU37LvucOxB14c5Vp_04q5g994EXng3brz9_42tnW_odvSvsf_n3qO99Ue1E</recordid><startdate>200309</startdate><enddate>200309</enddate><creator>Richardson, Susan L.</creator><creator>Tomé, Wolfgang A.</creator><creator>Orton, Nigel P.</creator><creator>McNutt, Todd R.</creator><creator>Paliwal, Bhudatt R.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200309</creationdate><title>IMRT delivery verification using a spiral phantom</title><author>Richardson, Susan L. ; Tomé, Wolfgang A. ; Orton, Nigel P. ; McNutt, Todd R. ; Paliwal, Bhudatt R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3895-12dfff0f9fcb7cbf7272808b2be6e1a9bf32707dde4c673267f3b4b1fef115023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Ancillary equipment</topic><topic>dosimetry</topic><topic>Drug delivery</topic><topic>Error analysis</topic><topic>Film Dosimetry - instrumentation</topic><topic>Film Dosimetry - methods</topic><topic>Film Dosimetry - standards</topic><topic>Humans</topic><topic>IMRT</topic><topic>Intensity modulated radiation therapy</topic><topic>Neoplasms - radiotherapy</topic><topic>phantoms</topic><topic>Phantoms, Imaging - standards</topic><topic>QA phantoms</topic><topic>Quality assurance</topic><topic>Quality assurance in radiotherapy</topic><topic>quality assurence</topic><topic>quality control</topic><topic>radiation therapy</topic><topic>Radiography</topic><topic>Radiotherapy Dosage - standards</topic><topic>Radiotherapy Planning, Computer-Assisted - instrumentation</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy Planning, Computer-Assisted - standards</topic><topic>Radiotherapy, Conformal - instrumentation</topic><topic>Radiotherapy, Conformal - methods</topic><topic>Radiotherapy, Conformal - standards</topic><topic>Reference Standards</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Subspaces</topic><topic>Testing procedures</topic><topic>Thermoluminescent dosimeters</topic><topic>Thermoluminescent Dosimetry - methods</topic><topic>United States</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Susan L.</creatorcontrib><creatorcontrib>Tomé, Wolfgang A.</creatorcontrib><creatorcontrib>Orton, Nigel P.</creatorcontrib><creatorcontrib>McNutt, Todd R.</creatorcontrib><creatorcontrib>Paliwal, Bhudatt R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Susan L.</au><au>Tomé, Wolfgang A.</au><au>Orton, Nigel P.</au><au>McNutt, Todd R.</au><au>Paliwal, Bhudatt R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IMRT delivery verification using a spiral phantom</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2003-09</date><risdate>2003</risdate><volume>30</volume><issue>9</issue><spage>2553</spage><epage>2558</epage><pages>2553-2558</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>14528978</pmid><doi>10.1118/1.1603965</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2003-09, Vol.30 (9), p.2553-2558 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_pubmed_primary_14528978 |
source | MEDLINE; Wiley Blackwell Single Titles |
subjects | Ancillary equipment dosimetry Drug delivery Error analysis Film Dosimetry - instrumentation Film Dosimetry - methods Film Dosimetry - standards Humans IMRT Intensity modulated radiation therapy Neoplasms - radiotherapy phantoms Phantoms, Imaging - standards QA phantoms Quality assurance Quality assurance in radiotherapy quality assurence quality control radiation therapy Radiography Radiotherapy Dosage - standards Radiotherapy Planning, Computer-Assisted - instrumentation Radiotherapy Planning, Computer-Assisted - methods Radiotherapy Planning, Computer-Assisted - standards Radiotherapy, Conformal - instrumentation Radiotherapy, Conformal - methods Radiotherapy, Conformal - standards Reference Standards Reproducibility of Results Sensitivity and Specificity Subspaces Testing procedures Thermoluminescent dosimeters Thermoluminescent Dosimetry - methods United States Water quality |
title | IMRT delivery verification using a spiral phantom |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IMRT%20delivery%20verification%20using%20a%20spiral%20phantom&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Richardson,%20Susan%20L.&rft.date=2003-09&rft.volume=30&rft.issue=9&rft.spage=2553&rft.epage=2558&rft.pages=2553-2558&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1603965&rft_dat=%3Cwiley_pubme%3EMP3965%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/14528978&rfr_iscdi=true |