IMRT delivery verification using a spiral phantom

In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2003-09, Vol.30 (9), p.2553-2558
Hauptverfasser: Richardson, Susan L., Tomé, Wolfgang A., Orton, Nigel P., McNutt, Todd R., Paliwal, Bhudatt R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2558
container_issue 9
container_start_page 2553
container_title Medical physics (Lancaster)
container_volume 30
creator Richardson, Susan L.
Tomé, Wolfgang A.
Orton, Nigel P.
McNutt, Todd R.
Paliwal, Bhudatt R.
description In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan.
doi_str_mv 10.1118/1.1603965
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmed_primary_14528978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>MP3965</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3895-12dfff0f9fcb7cbf7272808b2be6e1a9bf32707dde4c673267f3b4b1fef115023</originalsourceid><addsrcrecordid>eNp90F1LwzAUBuAgipvTC_-A9Fah85ykbZpLGX4MNhSZ1yVJE410a0m2Sf-90xYVRG9ybp7zct4QcoowRsT8EseYARNZukeGNOEsTiiIfTIEEElME0gH5CiEVwDIWAqHZIBJSnPB8yHB6fxxEZWmclvj22j3OOu0XLt6FW2CWz1HMgqN87KKmhe5WtfLY3JgZRXMST9H5OnmejG5i2f3t9PJ1SzWLBdpjLS01oIVViuuleWU0xxyRZXJDEqhLKMceFmaRGec0YxbphKF1ljEFCgbkfMuV_s6BG9s0Xi3lL4tEIqP2gUWfe2dPetss1FLU37LvucOxB14c5Vp_04q5g994EXng3brz9_42tnW_odvSvsf_n3qO99Ue1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>IMRT delivery verification using a spiral phantom</title><source>MEDLINE</source><source>Wiley Blackwell Single Titles</source><creator>Richardson, Susan L. ; Tomé, Wolfgang A. ; Orton, Nigel P. ; McNutt, Todd R. ; Paliwal, Bhudatt R.</creator><creatorcontrib>Richardson, Susan L. ; Tomé, Wolfgang A. ; Orton, Nigel P. ; McNutt, Todd R. ; Paliwal, Bhudatt R.</creatorcontrib><description>In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1118/1.1603965</identifier><identifier>PMID: 14528978</identifier><identifier>CODEN: MPHYA6</identifier><language>eng</language><publisher>United States: American Association of Physicists in Medicine</publisher><subject>Ancillary equipment ; dosimetry ; Drug delivery ; Error analysis ; Film Dosimetry - instrumentation ; Film Dosimetry - methods ; Film Dosimetry - standards ; Humans ; IMRT ; Intensity modulated radiation therapy ; Neoplasms - radiotherapy ; phantoms ; Phantoms, Imaging - standards ; QA phantoms ; Quality assurance ; Quality assurance in radiotherapy ; quality assurence ; quality control ; radiation therapy ; Radiography ; Radiotherapy Dosage - standards ; Radiotherapy Planning, Computer-Assisted - instrumentation ; Radiotherapy Planning, Computer-Assisted - methods ; Radiotherapy Planning, Computer-Assisted - standards ; Radiotherapy, Conformal - instrumentation ; Radiotherapy, Conformal - methods ; Radiotherapy, Conformal - standards ; Reference Standards ; Reproducibility of Results ; Sensitivity and Specificity ; Subspaces ; Testing procedures ; Thermoluminescent dosimeters ; Thermoluminescent Dosimetry - methods ; United States ; Water quality</subject><ispartof>Medical physics (Lancaster), 2003-09, Vol.30 (9), p.2553-2558</ispartof><rights>American Association of Physicists in Medicine</rights><rights>2003 American Association of Physicists in Medicine</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3895-12dfff0f9fcb7cbf7272808b2be6e1a9bf32707dde4c673267f3b4b1fef115023</citedby><cites>FETCH-LOGICAL-c3895-12dfff0f9fcb7cbf7272808b2be6e1a9bf32707dde4c673267f3b4b1fef115023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1118%2F1.1603965$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1118%2F1.1603965$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14528978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Richardson, Susan L.</creatorcontrib><creatorcontrib>Tomé, Wolfgang A.</creatorcontrib><creatorcontrib>Orton, Nigel P.</creatorcontrib><creatorcontrib>McNutt, Todd R.</creatorcontrib><creatorcontrib>Paliwal, Bhudatt R.</creatorcontrib><title>IMRT delivery verification using a spiral phantom</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan.</description><subject>Ancillary equipment</subject><subject>dosimetry</subject><subject>Drug delivery</subject><subject>Error analysis</subject><subject>Film Dosimetry - instrumentation</subject><subject>Film Dosimetry - methods</subject><subject>Film Dosimetry - standards</subject><subject>Humans</subject><subject>IMRT</subject><subject>Intensity modulated radiation therapy</subject><subject>Neoplasms - radiotherapy</subject><subject>phantoms</subject><subject>Phantoms, Imaging - standards</subject><subject>QA phantoms</subject><subject>Quality assurance</subject><subject>Quality assurance in radiotherapy</subject><subject>quality assurence</subject><subject>quality control</subject><subject>radiation therapy</subject><subject>Radiography</subject><subject>Radiotherapy Dosage - standards</subject><subject>Radiotherapy Planning, Computer-Assisted - instrumentation</subject><subject>Radiotherapy Planning, Computer-Assisted - methods</subject><subject>Radiotherapy Planning, Computer-Assisted - standards</subject><subject>Radiotherapy, Conformal - instrumentation</subject><subject>Radiotherapy, Conformal - methods</subject><subject>Radiotherapy, Conformal - standards</subject><subject>Reference Standards</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Subspaces</subject><subject>Testing procedures</subject><subject>Thermoluminescent dosimeters</subject><subject>Thermoluminescent Dosimetry - methods</subject><subject>United States</subject><subject>Water quality</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90F1LwzAUBuAgipvTC_-A9Fah85ykbZpLGX4MNhSZ1yVJE410a0m2Sf-90xYVRG9ybp7zct4QcoowRsT8EseYARNZukeGNOEsTiiIfTIEEElME0gH5CiEVwDIWAqHZIBJSnPB8yHB6fxxEZWmclvj22j3OOu0XLt6FW2CWz1HMgqN87KKmhe5WtfLY3JgZRXMST9H5OnmejG5i2f3t9PJ1SzWLBdpjLS01oIVViuuleWU0xxyRZXJDEqhLKMceFmaRGec0YxbphKF1ljEFCgbkfMuV_s6BG9s0Xi3lL4tEIqP2gUWfe2dPetss1FLU37LvucOxB14c5Vp_04q5g994EXng3brz9_42tnW_odvSvsf_n3qO99Ue1E</recordid><startdate>200309</startdate><enddate>200309</enddate><creator>Richardson, Susan L.</creator><creator>Tomé, Wolfgang A.</creator><creator>Orton, Nigel P.</creator><creator>McNutt, Todd R.</creator><creator>Paliwal, Bhudatt R.</creator><general>American Association of Physicists in Medicine</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200309</creationdate><title>IMRT delivery verification using a spiral phantom</title><author>Richardson, Susan L. ; Tomé, Wolfgang A. ; Orton, Nigel P. ; McNutt, Todd R. ; Paliwal, Bhudatt R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3895-12dfff0f9fcb7cbf7272808b2be6e1a9bf32707dde4c673267f3b4b1fef115023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Ancillary equipment</topic><topic>dosimetry</topic><topic>Drug delivery</topic><topic>Error analysis</topic><topic>Film Dosimetry - instrumentation</topic><topic>Film Dosimetry - methods</topic><topic>Film Dosimetry - standards</topic><topic>Humans</topic><topic>IMRT</topic><topic>Intensity modulated radiation therapy</topic><topic>Neoplasms - radiotherapy</topic><topic>phantoms</topic><topic>Phantoms, Imaging - standards</topic><topic>QA phantoms</topic><topic>Quality assurance</topic><topic>Quality assurance in radiotherapy</topic><topic>quality assurence</topic><topic>quality control</topic><topic>radiation therapy</topic><topic>Radiography</topic><topic>Radiotherapy Dosage - standards</topic><topic>Radiotherapy Planning, Computer-Assisted - instrumentation</topic><topic>Radiotherapy Planning, Computer-Assisted - methods</topic><topic>Radiotherapy Planning, Computer-Assisted - standards</topic><topic>Radiotherapy, Conformal - instrumentation</topic><topic>Radiotherapy, Conformal - methods</topic><topic>Radiotherapy, Conformal - standards</topic><topic>Reference Standards</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Subspaces</topic><topic>Testing procedures</topic><topic>Thermoluminescent dosimeters</topic><topic>Thermoluminescent Dosimetry - methods</topic><topic>United States</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Susan L.</creatorcontrib><creatorcontrib>Tomé, Wolfgang A.</creatorcontrib><creatorcontrib>Orton, Nigel P.</creatorcontrib><creatorcontrib>McNutt, Todd R.</creatorcontrib><creatorcontrib>Paliwal, Bhudatt R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Susan L.</au><au>Tomé, Wolfgang A.</au><au>Orton, Nigel P.</au><au>McNutt, Todd R.</au><au>Paliwal, Bhudatt R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IMRT delivery verification using a spiral phantom</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2003-09</date><risdate>2003</risdate><volume>30</volume><issue>9</issue><spage>2553</spage><epage>2558</epage><pages>2553-2558</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><coden>MPHYA6</coden><abstract>In this paper we report on the testing and verification of a system for IMRT delivery quality assurance that uses a cylindrical solid water phantom with a spiral trajectory for radiographic film placement. This spiral film technique provides more complete dosimetric verification of the entire IMRT treatment than perpendicular film methods, since it samples a three-dimensional dose subspace rather than using measurements at only one or two depths. As an example, the complete analysis of the predicted and measured spiral films is described for an intracranial IMRT treatment case. The results of this analysis are compared to those of a single field perpendicular film technique that is typically used for IMRT QA. The comparison demonstrates that both methods result in a dosimetric error within a clinical tolerance of 5%, however the spiral phantom QA technique provides a more complete dosimetric verification while being less time consuming. To independently verify the dosimetry obtained with the spiral film, the same IMRT treatment was delivered to a similar phantom in which LiF thermoluminescent dosimeters were arranged along the spiral trajectory. The maximum difference between the predicted and measured TLD data for the 1.8 Gy fraction was 0.06 Gy for a TLD located in a high dose gradient region. This further validates the ability of the spiral phantom QA process to accurately verify delivery of an IMRT plan.</abstract><cop>United States</cop><pub>American Association of Physicists in Medicine</pub><pmid>14528978</pmid><doi>10.1118/1.1603965</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2003-09, Vol.30 (9), p.2553-2558
issn 0094-2405
2473-4209
language eng
recordid cdi_pubmed_primary_14528978
source MEDLINE; Wiley Blackwell Single Titles
subjects Ancillary equipment
dosimetry
Drug delivery
Error analysis
Film Dosimetry - instrumentation
Film Dosimetry - methods
Film Dosimetry - standards
Humans
IMRT
Intensity modulated radiation therapy
Neoplasms - radiotherapy
phantoms
Phantoms, Imaging - standards
QA phantoms
Quality assurance
Quality assurance in radiotherapy
quality assurence
quality control
radiation therapy
Radiography
Radiotherapy Dosage - standards
Radiotherapy Planning, Computer-Assisted - instrumentation
Radiotherapy Planning, Computer-Assisted - methods
Radiotherapy Planning, Computer-Assisted - standards
Radiotherapy, Conformal - instrumentation
Radiotherapy, Conformal - methods
Radiotherapy, Conformal - standards
Reference Standards
Reproducibility of Results
Sensitivity and Specificity
Subspaces
Testing procedures
Thermoluminescent dosimeters
Thermoluminescent Dosimetry - methods
United States
Water quality
title IMRT delivery verification using a spiral phantom
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A24%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IMRT%20delivery%20verification%20using%20a%20spiral%20phantom&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Richardson,%20Susan%20L.&rft.date=2003-09&rft.volume=30&rft.issue=9&rft.spage=2553&rft.epage=2558&rft.pages=2553-2558&rft.issn=0094-2405&rft.eissn=2473-4209&rft.coden=MPHYA6&rft_id=info:doi/10.1118/1.1603965&rft_dat=%3Cwiley_pubme%3EMP3965%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/14528978&rfr_iscdi=true