Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model

Departments of 1 Bioengineering, 2 Pediatrics, 3 Anesthesiology, and 4 Physiology and Biophysics, University of Washington, Seattle 98194; and 5 Children's Hospital and Regional Medical Center, Seattle, Washington 98105 Submitted 24 April 2003 ; accepted in final form 14 July 2003 An anatomical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Heart and circulatory physiology 2003-11, Vol.285 (5), p.H1826-H1836
Hauptverfasser: Beard, Daniel A, Schenkman, Kenneth A, Feigl, Eric O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page H1836
container_issue 5
container_start_page H1826
container_title American journal of physiology. Heart and circulatory physiology
container_volume 285
creator Beard, Daniel A
Schenkman, Kenneth A
Feigl, Eric O
description Departments of 1 Bioengineering, 2 Pediatrics, 3 Anesthesiology, and 4 Physiology and Biophysics, University of Washington, Seattle 98194; and 5 Children's Hospital and Regional Medical Center, Seattle, Washington 98105 Submitted 24 April 2003 ; accepted in final form 14 July 2003 An anatomically realistic model for oxygen transport in cardiac tissue is introduced for analyzing data measured from isolated perfused guinea pig hearts. The model is constructed to match the microvascular anatomy of cardiac tissue based on available morphometric data. Transport in the three-dimensional system (divided into distinct microvascular, interstitial, and parenchymal spaces) is simulated. The model is used to interpret experimental data on mean cardiac tissue myoglobin saturation and to reveal differences in tissue oxygenation between buffer-perfused and red blood cell-perfused isolated hearts. Interpretation of measured mean myoglobin saturation is strongly dependent on the oxygen content of the perfusate (e.g., red blood cell-containing vs. cell-free perfusate). Model calculations match experimental values of mean tissue myoglobin saturation, measured mean myoglobin, and venous oxygen tension and can be used to predict distributions of intracellular oxygen tension. Calculations reveal that 20% of the tissue is hypoxic with an oxygen tension of
doi_str_mv 10.1152/ajpheart.00380.2003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_12869375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71284034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-cc99950eb2966c4dc87c4de83ae69a8529231ec1f303f91e1b0e673d4593a9553</originalsourceid><addsrcrecordid>eNp1kMFu1DAQhi0EotvCEyChnLhla2fWSSxOqKK0UhGXcrZmncmuKycOtgPN2-PtLpQL0sgjjf9vbH2MvRN8LYSsLvFh2hOGtOYcWr6ucnvBVvmmKoUE9ZKtONRQ1gLkGTuP8YFzLpsaXrMzUbW1gkau2Ph18QZDZ9EV_nHZ0YjJ-rGwuaJ3mKgrnl6JxRSos-Yw2C4Fjrkw-cEadG4pAqGzMVlT5EnwPzGa2WEoUsAxTj6kYvAduTfsVY8u0ttTv2Dfrz_fX92Ud9--3F59uisNKEilMUopyWlbqbo2m860TT6pBaRaYSsrVYEgI3rg0CtBYsupbqDbSAWopIQL9uG4dwr-x0wx6cFGQ87hSH6OuskGNhw2OQjHYP50jIF6PQU7YFi04PqgWf_RrJ8064PmTL0_rZ-3A3XPzMlrDlweA3u72_-ygfS0X6L1zu-W541VK7XUN6Kt6kx8_D9xPTt3T4_pL_oPqaeuh98_qqQZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71284034</pqid></control><display><type>article</type><title>Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Beard, Daniel A ; Schenkman, Kenneth A ; Feigl, Eric O</creator><creatorcontrib>Beard, Daniel A ; Schenkman, Kenneth A ; Feigl, Eric O</creatorcontrib><description>Departments of 1 Bioengineering, 2 Pediatrics, 3 Anesthesiology, and 4 Physiology and Biophysics, University of Washington, Seattle 98194; and 5 Children's Hospital and Regional Medical Center, Seattle, Washington 98105 Submitted 24 April 2003 ; accepted in final form 14 July 2003 An anatomically realistic model for oxygen transport in cardiac tissue is introduced for analyzing data measured from isolated perfused guinea pig hearts. The model is constructed to match the microvascular anatomy of cardiac tissue based on available morphometric data. Transport in the three-dimensional system (divided into distinct microvascular, interstitial, and parenchymal spaces) is simulated. The model is used to interpret experimental data on mean cardiac tissue myoglobin saturation and to reveal differences in tissue oxygenation between buffer-perfused and red blood cell-perfused isolated hearts. Interpretation of measured mean myoglobin saturation is strongly dependent on the oxygen content of the perfusate (e.g., red blood cell-containing vs. cell-free perfusate). Model calculations match experimental values of mean tissue myoglobin saturation, measured mean myoglobin, and venous oxygen tension and can be used to predict distributions of intracellular oxygen tension. Calculations reveal that 20% of the tissue is hypoxic with an oxygen tension of &lt;0.5 mmHg when the buffer is equilibrated with 95% oxygen to give an arterial oxygen tension of over 600 mmHg. The addition of red blood cells to give a hematocrit of only 5% prevents tissue hypoxia. It is incorrect to assume that the usual buffer-perfused Langendorff heart preparation is adequately oxygenated for flows in the range of 10 ml · min –1 · ml tissue –1 . capillary network; Langendorff isolated heart; hypoxia Address for reprint requests and other correspondence: D. A. Beard, Box 352255, Dept. of Bioengineering, Univ. of Washington, Seattle, WA 98195 (E-mail: dbeard{at}bioeng.washington.edu ).</description><identifier>ISSN: 0363-6135</identifier><identifier>EISSN: 1522-1539</identifier><identifier>DOI: 10.1152/ajpheart.00380.2003</identifier><identifier>PMID: 12869375</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Buffers ; Coronary Circulation - physiology ; Humans ; In Vitro Techniques ; Microcirculation - physiology ; Models, Cardiovascular ; Myocardium - metabolism ; Myoglobin - metabolism ; Oxygen - metabolism ; Perfusion ; Predictive Value of Tests</subject><ispartof>American journal of physiology. Heart and circulatory physiology, 2003-11, Vol.285 (5), p.H1826-H1836</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-cc99950eb2966c4dc87c4de83ae69a8529231ec1f303f91e1b0e673d4593a9553</citedby><cites>FETCH-LOGICAL-c393t-cc99950eb2966c4dc87c4de83ae69a8529231ec1f303f91e1b0e673d4593a9553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12869375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beard, Daniel A</creatorcontrib><creatorcontrib>Schenkman, Kenneth A</creatorcontrib><creatorcontrib>Feigl, Eric O</creatorcontrib><title>Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model</title><title>American journal of physiology. Heart and circulatory physiology</title><addtitle>Am J Physiol Heart Circ Physiol</addtitle><description>Departments of 1 Bioengineering, 2 Pediatrics, 3 Anesthesiology, and 4 Physiology and Biophysics, University of Washington, Seattle 98194; and 5 Children's Hospital and Regional Medical Center, Seattle, Washington 98105 Submitted 24 April 2003 ; accepted in final form 14 July 2003 An anatomically realistic model for oxygen transport in cardiac tissue is introduced for analyzing data measured from isolated perfused guinea pig hearts. The model is constructed to match the microvascular anatomy of cardiac tissue based on available morphometric data. Transport in the three-dimensional system (divided into distinct microvascular, interstitial, and parenchymal spaces) is simulated. The model is used to interpret experimental data on mean cardiac tissue myoglobin saturation and to reveal differences in tissue oxygenation between buffer-perfused and red blood cell-perfused isolated hearts. Interpretation of measured mean myoglobin saturation is strongly dependent on the oxygen content of the perfusate (e.g., red blood cell-containing vs. cell-free perfusate). Model calculations match experimental values of mean tissue myoglobin saturation, measured mean myoglobin, and venous oxygen tension and can be used to predict distributions of intracellular oxygen tension. Calculations reveal that 20% of the tissue is hypoxic with an oxygen tension of &lt;0.5 mmHg when the buffer is equilibrated with 95% oxygen to give an arterial oxygen tension of over 600 mmHg. The addition of red blood cells to give a hematocrit of only 5% prevents tissue hypoxia. It is incorrect to assume that the usual buffer-perfused Langendorff heart preparation is adequately oxygenated for flows in the range of 10 ml · min –1 · ml tissue –1 . capillary network; Langendorff isolated heart; hypoxia Address for reprint requests and other correspondence: D. A. Beard, Box 352255, Dept. of Bioengineering, Univ. of Washington, Seattle, WA 98195 (E-mail: dbeard{at}bioeng.washington.edu ).</description><subject>Animals</subject><subject>Buffers</subject><subject>Coronary Circulation - physiology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Microcirculation - physiology</subject><subject>Models, Cardiovascular</subject><subject>Myocardium - metabolism</subject><subject>Myoglobin - metabolism</subject><subject>Oxygen - metabolism</subject><subject>Perfusion</subject><subject>Predictive Value of Tests</subject><issn>0363-6135</issn><issn>1522-1539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFu1DAQhi0EotvCEyChnLhla2fWSSxOqKK0UhGXcrZmncmuKycOtgPN2-PtLpQL0sgjjf9vbH2MvRN8LYSsLvFh2hOGtOYcWr6ucnvBVvmmKoUE9ZKtONRQ1gLkGTuP8YFzLpsaXrMzUbW1gkau2Ph18QZDZ9EV_nHZ0YjJ-rGwuaJ3mKgrnl6JxRSos-Yw2C4Fjrkw-cEadG4pAqGzMVlT5EnwPzGa2WEoUsAxTj6kYvAduTfsVY8u0ttTv2Dfrz_fX92Ud9--3F59uisNKEilMUopyWlbqbo2m860TT6pBaRaYSsrVYEgI3rg0CtBYsupbqDbSAWopIQL9uG4dwr-x0wx6cFGQ87hSH6OuskGNhw2OQjHYP50jIF6PQU7YFi04PqgWf_RrJ8064PmTL0_rZ-3A3XPzMlrDlweA3u72_-ygfS0X6L1zu-W541VK7XUN6Kt6kx8_D9xPTt3T4_pL_oPqaeuh98_qqQZ</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Beard, Daniel A</creator><creator>Schenkman, Kenneth A</creator><creator>Feigl, Eric O</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20031101</creationdate><title>Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model</title><author>Beard, Daniel A ; Schenkman, Kenneth A ; Feigl, Eric O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-cc99950eb2966c4dc87c4de83ae69a8529231ec1f303f91e1b0e673d4593a9553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Buffers</topic><topic>Coronary Circulation - physiology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Microcirculation - physiology</topic><topic>Models, Cardiovascular</topic><topic>Myocardium - metabolism</topic><topic>Myoglobin - metabolism</topic><topic>Oxygen - metabolism</topic><topic>Perfusion</topic><topic>Predictive Value of Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beard, Daniel A</creatorcontrib><creatorcontrib>Schenkman, Kenneth A</creatorcontrib><creatorcontrib>Feigl, Eric O</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beard, Daniel A</au><au>Schenkman, Kenneth A</au><au>Feigl, Eric O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model</atitle><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle><addtitle>Am J Physiol Heart Circ Physiol</addtitle><date>2003-11-01</date><risdate>2003</risdate><volume>285</volume><issue>5</issue><spage>H1826</spage><epage>H1836</epage><pages>H1826-H1836</pages><issn>0363-6135</issn><eissn>1522-1539</eissn><abstract>Departments of 1 Bioengineering, 2 Pediatrics, 3 Anesthesiology, and 4 Physiology and Biophysics, University of Washington, Seattle 98194; and 5 Children's Hospital and Regional Medical Center, Seattle, Washington 98105 Submitted 24 April 2003 ; accepted in final form 14 July 2003 An anatomically realistic model for oxygen transport in cardiac tissue is introduced for analyzing data measured from isolated perfused guinea pig hearts. The model is constructed to match the microvascular anatomy of cardiac tissue based on available morphometric data. Transport in the three-dimensional system (divided into distinct microvascular, interstitial, and parenchymal spaces) is simulated. The model is used to interpret experimental data on mean cardiac tissue myoglobin saturation and to reveal differences in tissue oxygenation between buffer-perfused and red blood cell-perfused isolated hearts. Interpretation of measured mean myoglobin saturation is strongly dependent on the oxygen content of the perfusate (e.g., red blood cell-containing vs. cell-free perfusate). Model calculations match experimental values of mean tissue myoglobin saturation, measured mean myoglobin, and venous oxygen tension and can be used to predict distributions of intracellular oxygen tension. Calculations reveal that 20% of the tissue is hypoxic with an oxygen tension of &lt;0.5 mmHg when the buffer is equilibrated with 95% oxygen to give an arterial oxygen tension of over 600 mmHg. The addition of red blood cells to give a hematocrit of only 5% prevents tissue hypoxia. It is incorrect to assume that the usual buffer-perfused Langendorff heart preparation is adequately oxygenated for flows in the range of 10 ml · min –1 · ml tissue –1 . capillary network; Langendorff isolated heart; hypoxia Address for reprint requests and other correspondence: D. A. Beard, Box 352255, Dept. of Bioengineering, Univ. of Washington, Seattle, WA 98195 (E-mail: dbeard{at}bioeng.washington.edu ).</abstract><cop>United States</cop><pmid>12869375</pmid><doi>10.1152/ajpheart.00380.2003</doi></addata></record>
fulltext fulltext
identifier ISSN: 0363-6135
ispartof American journal of physiology. Heart and circulatory physiology, 2003-11, Vol.285 (5), p.H1826-H1836
issn 0363-6135
1522-1539
language eng
recordid cdi_pubmed_primary_12869375
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Buffers
Coronary Circulation - physiology
Humans
In Vitro Techniques
Microcirculation - physiology
Models, Cardiovascular
Myocardium - metabolism
Myoglobin - metabolism
Oxygen - metabolism
Perfusion
Predictive Value of Tests
title Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myocardial%20oxygenation%20in%20isolated%20hearts%20predicted%20by%20an%20anatomically%20realistic%20microvascular%20transport%20model&rft.jtitle=American%20journal%20of%20physiology.%20Heart%20and%20circulatory%20physiology&rft.au=Beard,%20Daniel%20A&rft.date=2003-11-01&rft.volume=285&rft.issue=5&rft.spage=H1826&rft.epage=H1836&rft.pages=H1826-H1836&rft.issn=0363-6135&rft.eissn=1522-1539&rft_id=info:doi/10.1152/ajpheart.00380.2003&rft_dat=%3Cproquest_pubme%3E71284034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71284034&rft_id=info:pmid/12869375&rfr_iscdi=true