Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model
Departments of 1 Bioengineering, 2 Pediatrics, 3 Anesthesiology, and 4 Physiology and Biophysics, University of Washington, Seattle 98194; and 5 Children's Hospital and Regional Medical Center, Seattle, Washington 98105 Submitted 24 April 2003 ; accepted in final form 14 July 2003 An anatomical...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Heart and circulatory physiology 2003-11, Vol.285 (5), p.H1826-H1836 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | H1836 |
---|---|
container_issue | 5 |
container_start_page | H1826 |
container_title | American journal of physiology. Heart and circulatory physiology |
container_volume | 285 |
creator | Beard, Daniel A Schenkman, Kenneth A Feigl, Eric O |
description | Departments of 1 Bioengineering, 2 Pediatrics, 3 Anesthesiology, and 4 Physiology and Biophysics, University of Washington, Seattle 98194; and 5 Children's Hospital and Regional Medical Center, Seattle, Washington 98105
Submitted 24 April 2003
; accepted in final form 14 July 2003
An anatomically realistic model for oxygen transport in cardiac tissue is introduced for analyzing data measured from isolated perfused guinea pig hearts. The model is constructed to match the microvascular anatomy of cardiac tissue based on available morphometric data. Transport in the three-dimensional system (divided into distinct microvascular, interstitial, and parenchymal spaces) is simulated. The model is used to interpret experimental data on mean cardiac tissue myoglobin saturation and to reveal differences in tissue oxygenation between buffer-perfused and red blood cell-perfused isolated hearts. Interpretation of measured mean myoglobin saturation is strongly dependent on the oxygen content of the perfusate (e.g., red blood cell-containing vs. cell-free perfusate). Model calculations match experimental values of mean tissue myoglobin saturation, measured mean myoglobin, and venous oxygen tension and can be used to predict distributions of intracellular oxygen tension. Calculations reveal that 20% of the tissue is hypoxic with an oxygen tension of |
doi_str_mv | 10.1152/ajpheart.00380.2003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_12869375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71284034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-cc99950eb2966c4dc87c4de83ae69a8529231ec1f303f91e1b0e673d4593a9553</originalsourceid><addsrcrecordid>eNp1kMFu1DAQhi0EotvCEyChnLhla2fWSSxOqKK0UhGXcrZmncmuKycOtgPN2-PtLpQL0sgjjf9vbH2MvRN8LYSsLvFh2hOGtOYcWr6ucnvBVvmmKoUE9ZKtONRQ1gLkGTuP8YFzLpsaXrMzUbW1gkau2Ph18QZDZ9EV_nHZ0YjJ-rGwuaJ3mKgrnl6JxRSos-Yw2C4Fjrkw-cEadG4pAqGzMVlT5EnwPzGa2WEoUsAxTj6kYvAduTfsVY8u0ttTv2Dfrz_fX92Ud9--3F59uisNKEilMUopyWlbqbo2m860TT6pBaRaYSsrVYEgI3rg0CtBYsupbqDbSAWopIQL9uG4dwr-x0wx6cFGQ87hSH6OuskGNhw2OQjHYP50jIF6PQU7YFi04PqgWf_RrJ8064PmTL0_rZ-3A3XPzMlrDlweA3u72_-ygfS0X6L1zu-W541VK7XUN6Kt6kx8_D9xPTt3T4_pL_oPqaeuh98_qqQZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71284034</pqid></control><display><type>article</type><title>Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Beard, Daniel A ; Schenkman, Kenneth A ; Feigl, Eric O</creator><creatorcontrib>Beard, Daniel A ; Schenkman, Kenneth A ; Feigl, Eric O</creatorcontrib><description>Departments of 1 Bioengineering, 2 Pediatrics, 3 Anesthesiology, and 4 Physiology and Biophysics, University of Washington, Seattle 98194; and 5 Children's Hospital and Regional Medical Center, Seattle, Washington 98105
Submitted 24 April 2003
; accepted in final form 14 July 2003
An anatomically realistic model for oxygen transport in cardiac tissue is introduced for analyzing data measured from isolated perfused guinea pig hearts. The model is constructed to match the microvascular anatomy of cardiac tissue based on available morphometric data. Transport in the three-dimensional system (divided into distinct microvascular, interstitial, and parenchymal spaces) is simulated. The model is used to interpret experimental data on mean cardiac tissue myoglobin saturation and to reveal differences in tissue oxygenation between buffer-perfused and red blood cell-perfused isolated hearts. Interpretation of measured mean myoglobin saturation is strongly dependent on the oxygen content of the perfusate (e.g., red blood cell-containing vs. cell-free perfusate). Model calculations match experimental values of mean tissue myoglobin saturation, measured mean myoglobin, and venous oxygen tension and can be used to predict distributions of intracellular oxygen tension. Calculations reveal that 20% of the tissue is hypoxic with an oxygen tension of <0.5 mmHg when the buffer is equilibrated with 95% oxygen to give an arterial oxygen tension of over 600 mmHg. The addition of red blood cells to give a hematocrit of only 5% prevents tissue hypoxia. It is incorrect to assume that the usual buffer-perfused Langendorff heart preparation is adequately oxygenated for flows in the range of 10 ml · min 1 · ml tissue 1 .
capillary network; Langendorff isolated heart; hypoxia
Address for reprint requests and other correspondence: D. A. Beard, Box 352255, Dept. of Bioengineering, Univ. of Washington, Seattle, WA 98195 (E-mail: dbeard{at}bioeng.washington.edu ).</description><identifier>ISSN: 0363-6135</identifier><identifier>EISSN: 1522-1539</identifier><identifier>DOI: 10.1152/ajpheart.00380.2003</identifier><identifier>PMID: 12869375</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Buffers ; Coronary Circulation - physiology ; Humans ; In Vitro Techniques ; Microcirculation - physiology ; Models, Cardiovascular ; Myocardium - metabolism ; Myoglobin - metabolism ; Oxygen - metabolism ; Perfusion ; Predictive Value of Tests</subject><ispartof>American journal of physiology. Heart and circulatory physiology, 2003-11, Vol.285 (5), p.H1826-H1836</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-cc99950eb2966c4dc87c4de83ae69a8529231ec1f303f91e1b0e673d4593a9553</citedby><cites>FETCH-LOGICAL-c393t-cc99950eb2966c4dc87c4de83ae69a8529231ec1f303f91e1b0e673d4593a9553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3026,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12869375$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beard, Daniel A</creatorcontrib><creatorcontrib>Schenkman, Kenneth A</creatorcontrib><creatorcontrib>Feigl, Eric O</creatorcontrib><title>Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model</title><title>American journal of physiology. Heart and circulatory physiology</title><addtitle>Am J Physiol Heart Circ Physiol</addtitle><description>Departments of 1 Bioengineering, 2 Pediatrics, 3 Anesthesiology, and 4 Physiology and Biophysics, University of Washington, Seattle 98194; and 5 Children's Hospital and Regional Medical Center, Seattle, Washington 98105
Submitted 24 April 2003
; accepted in final form 14 July 2003
An anatomically realistic model for oxygen transport in cardiac tissue is introduced for analyzing data measured from isolated perfused guinea pig hearts. The model is constructed to match the microvascular anatomy of cardiac tissue based on available morphometric data. Transport in the three-dimensional system (divided into distinct microvascular, interstitial, and parenchymal spaces) is simulated. The model is used to interpret experimental data on mean cardiac tissue myoglobin saturation and to reveal differences in tissue oxygenation between buffer-perfused and red blood cell-perfused isolated hearts. Interpretation of measured mean myoglobin saturation is strongly dependent on the oxygen content of the perfusate (e.g., red blood cell-containing vs. cell-free perfusate). Model calculations match experimental values of mean tissue myoglobin saturation, measured mean myoglobin, and venous oxygen tension and can be used to predict distributions of intracellular oxygen tension. Calculations reveal that 20% of the tissue is hypoxic with an oxygen tension of <0.5 mmHg when the buffer is equilibrated with 95% oxygen to give an arterial oxygen tension of over 600 mmHg. The addition of red blood cells to give a hematocrit of only 5% prevents tissue hypoxia. It is incorrect to assume that the usual buffer-perfused Langendorff heart preparation is adequately oxygenated for flows in the range of 10 ml · min 1 · ml tissue 1 .
capillary network; Langendorff isolated heart; hypoxia
Address for reprint requests and other correspondence: D. A. Beard, Box 352255, Dept. of Bioengineering, Univ. of Washington, Seattle, WA 98195 (E-mail: dbeard{at}bioeng.washington.edu ).</description><subject>Animals</subject><subject>Buffers</subject><subject>Coronary Circulation - physiology</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Microcirculation - physiology</subject><subject>Models, Cardiovascular</subject><subject>Myocardium - metabolism</subject><subject>Myoglobin - metabolism</subject><subject>Oxygen - metabolism</subject><subject>Perfusion</subject><subject>Predictive Value of Tests</subject><issn>0363-6135</issn><issn>1522-1539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMFu1DAQhi0EotvCEyChnLhla2fWSSxOqKK0UhGXcrZmncmuKycOtgPN2-PtLpQL0sgjjf9vbH2MvRN8LYSsLvFh2hOGtOYcWr6ucnvBVvmmKoUE9ZKtONRQ1gLkGTuP8YFzLpsaXrMzUbW1gkau2Ph18QZDZ9EV_nHZ0YjJ-rGwuaJ3mKgrnl6JxRSos-Yw2C4Fjrkw-cEadG4pAqGzMVlT5EnwPzGa2WEoUsAxTj6kYvAduTfsVY8u0ttTv2Dfrz_fX92Ud9--3F59uisNKEilMUopyWlbqbo2m860TT6pBaRaYSsrVYEgI3rg0CtBYsupbqDbSAWopIQL9uG4dwr-x0wx6cFGQ87hSH6OuskGNhw2OQjHYP50jIF6PQU7YFi04PqgWf_RrJ8064PmTL0_rZ-3A3XPzMlrDlweA3u72_-ygfS0X6L1zu-W541VK7XUN6Kt6kx8_D9xPTt3T4_pL_oPqaeuh98_qqQZ</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Beard, Daniel A</creator><creator>Schenkman, Kenneth A</creator><creator>Feigl, Eric O</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20031101</creationdate><title>Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model</title><author>Beard, Daniel A ; Schenkman, Kenneth A ; Feigl, Eric O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-cc99950eb2966c4dc87c4de83ae69a8529231ec1f303f91e1b0e673d4593a9553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Buffers</topic><topic>Coronary Circulation - physiology</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Microcirculation - physiology</topic><topic>Models, Cardiovascular</topic><topic>Myocardium - metabolism</topic><topic>Myoglobin - metabolism</topic><topic>Oxygen - metabolism</topic><topic>Perfusion</topic><topic>Predictive Value of Tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beard, Daniel A</creatorcontrib><creatorcontrib>Schenkman, Kenneth A</creatorcontrib><creatorcontrib>Feigl, Eric O</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beard, Daniel A</au><au>Schenkman, Kenneth A</au><au>Feigl, Eric O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model</atitle><jtitle>American journal of physiology. Heart and circulatory physiology</jtitle><addtitle>Am J Physiol Heart Circ Physiol</addtitle><date>2003-11-01</date><risdate>2003</risdate><volume>285</volume><issue>5</issue><spage>H1826</spage><epage>H1836</epage><pages>H1826-H1836</pages><issn>0363-6135</issn><eissn>1522-1539</eissn><abstract>Departments of 1 Bioengineering, 2 Pediatrics, 3 Anesthesiology, and 4 Physiology and Biophysics, University of Washington, Seattle 98194; and 5 Children's Hospital and Regional Medical Center, Seattle, Washington 98105
Submitted 24 April 2003
; accepted in final form 14 July 2003
An anatomically realistic model for oxygen transport in cardiac tissue is introduced for analyzing data measured from isolated perfused guinea pig hearts. The model is constructed to match the microvascular anatomy of cardiac tissue based on available morphometric data. Transport in the three-dimensional system (divided into distinct microvascular, interstitial, and parenchymal spaces) is simulated. The model is used to interpret experimental data on mean cardiac tissue myoglobin saturation and to reveal differences in tissue oxygenation between buffer-perfused and red blood cell-perfused isolated hearts. Interpretation of measured mean myoglobin saturation is strongly dependent on the oxygen content of the perfusate (e.g., red blood cell-containing vs. cell-free perfusate). Model calculations match experimental values of mean tissue myoglobin saturation, measured mean myoglobin, and venous oxygen tension and can be used to predict distributions of intracellular oxygen tension. Calculations reveal that 20% of the tissue is hypoxic with an oxygen tension of <0.5 mmHg when the buffer is equilibrated with 95% oxygen to give an arterial oxygen tension of over 600 mmHg. The addition of red blood cells to give a hematocrit of only 5% prevents tissue hypoxia. It is incorrect to assume that the usual buffer-perfused Langendorff heart preparation is adequately oxygenated for flows in the range of 10 ml · min 1 · ml tissue 1 .
capillary network; Langendorff isolated heart; hypoxia
Address for reprint requests and other correspondence: D. A. Beard, Box 352255, Dept. of Bioengineering, Univ. of Washington, Seattle, WA 98195 (E-mail: dbeard{at}bioeng.washington.edu ).</abstract><cop>United States</cop><pmid>12869375</pmid><doi>10.1152/ajpheart.00380.2003</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-6135 |
ispartof | American journal of physiology. Heart and circulatory physiology, 2003-11, Vol.285 (5), p.H1826-H1836 |
issn | 0363-6135 1522-1539 |
language | eng |
recordid | cdi_pubmed_primary_12869375 |
source | MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals Buffers Coronary Circulation - physiology Humans In Vitro Techniques Microcirculation - physiology Models, Cardiovascular Myocardium - metabolism Myoglobin - metabolism Oxygen - metabolism Perfusion Predictive Value of Tests |
title | Myocardial oxygenation in isolated hearts predicted by an anatomically realistic microvascular transport model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A05%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myocardial%20oxygenation%20in%20isolated%20hearts%20predicted%20by%20an%20anatomically%20realistic%20microvascular%20transport%20model&rft.jtitle=American%20journal%20of%20physiology.%20Heart%20and%20circulatory%20physiology&rft.au=Beard,%20Daniel%20A&rft.date=2003-11-01&rft.volume=285&rft.issue=5&rft.spage=H1826&rft.epage=H1836&rft.pages=H1826-H1836&rft.issn=0363-6135&rft.eissn=1522-1539&rft_id=info:doi/10.1152/ajpheart.00380.2003&rft_dat=%3Cproquest_pubme%3E71284034%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71284034&rft_id=info:pmid/12869375&rfr_iscdi=true |