New challenges in quantum chemistry: quests for accurate calculations for large molecular systems
As quantum chemistry plays a more and more central role in many complicated chemical problems, it has become necessary to obtain accurate results for large molecular systems. Conventional quantum chemistry methods are either too expensive to apply to large systems or too approximate for the results...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2002-06, Vol.360 (1795), p.1149-1164 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1164 |
---|---|
container_issue | 1795 |
container_start_page | 1149 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 360 |
creator | Morokuma, Keiji |
description | As quantum chemistry plays a more and more central role in many complicated chemical problems, it has become necessary to obtain accurate results for large molecular systems. Conventional quantum chemistry methods are either too expensive to apply to large systems or too approximate for the results to be reliable, and they fail to satisfy this requirement. A variety of different approaches is being developed with the aim of achieving this goal: local correlation methods; divide-and-conquer methods; linear-scaling density functional methods based on the fast multipole and other approximations; effective potential methods; and hybrid methods. ONIOM (our N-layered integrated molecular orbital plus molecular mechanics method), developed by the authors, is a hybrid method in which a large molecular system is divided into onion-skin-like layers, and different quantum chemistry/molecular mechanics methods are used for different parts of the system; the results are combined to extrapolatively estimate the results of high-level calculation for the real system. Several applications of ONIOM will be discussed. |
doi_str_mv | 10.1098/rsta.2002.0993 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_12804271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3066430</jstor_id><sourcerecordid>3066430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-2b94e96a269a36e285f331101c6e6f28cc58be3f4d38a3ac684aa313b0a16f993</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRAVLYUrJ4Ry6i2Lv-LEnKArCkhLufDRmzXrnexmceLFdlTy73HIqlUPcLJn3pvnN89Z9oKSBSWqfu1DhAUjhC2IUvxRdkZFRQumJHuc7lyKoiT85jR7GsKeEEplyZ5kp5TVRLCKnmVwjbe52YG12G8x5G2f_xqgj0OXuti1IfrxTWphiCFvnM_BmMFDxNyANYOF2Lp-Riz4Leadszj1fR7GELELz7KTBmzA58fzPPt29f7r8mOx-vLh0_LdqjBC8ViwtRKoJDCpgEtkddlwTimhRqJsWG1MWa-RN2LDa-BgZC0AOOVrAlQ2affz7GLWPXj3169O7g1aCz26IeiK1apikifiYiYa70Lw2OiDbzvwo6ZET6HqKVQ9haqnUNPAq6PysO5wc08_ppgIfCZ4N6YVnWkxjnrvBt-n8t-yL-epfYjO36lyIqXgJMHFDKc_wN93MPifWla8KvX3WujLm6sfS3b9Wa8Sn878Xbvd3bYe9QM3qTik57lMZipVakrFlNnb_85Mho3rI_bx4aRuBmv1YdPwP-rVx0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72897263</pqid></control><display><type>article</type><title>New challenges in quantum chemistry: quests for accurate calculations for large molecular systems</title><source>MEDLINE</source><source>JSTOR Mathematics & Statistics</source><creator>Morokuma, Keiji</creator><contributor>Goodfellow, Julia ; Burke, Philip ; Tildesley, Dominic ; Catlow, Richard ; Wilson, Maggie</contributor><creatorcontrib>Morokuma, Keiji ; Goodfellow, Julia ; Burke, Philip ; Tildesley, Dominic ; Catlow, Richard ; Wilson, Maggie</creatorcontrib><description>As quantum chemistry plays a more and more central role in many complicated chemical problems, it has become necessary to obtain accurate results for large molecular systems. Conventional quantum chemistry methods are either too expensive to apply to large systems or too approximate for the results to be reliable, and they fail to satisfy this requirement. A variety of different approaches is being developed with the aim of achieving this goal: local correlation methods; divide-and-conquer methods; linear-scaling density functional methods based on the fast multipole and other approximations; effective potential methods; and hybrid methods. ONIOM (our N-layered integrated molecular orbital plus molecular mechanics method), developed by the authors, is a hybrid method in which a large molecular system is divided into onion-skin-like layers, and different quantum chemistry/molecular mechanics methods are used for different parts of the system; the results are combined to extrapolatively estimate the results of high-level calculation for the real system. Several applications of ONIOM will be discussed.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2002.0993</identifier><identifier>PMID: 12804271</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Active sites ; Algorithms ; Atoms ; Carbon - chemistry ; Carbon dioxide ; Carbon Dioxide - chemistry ; Catalysis ; Chemical bonding ; Chemical reactions ; Chemistry, Physical - methods ; Chemistry, Physical - trends ; Computer Simulation ; Cyclohexanes - chemistry ; Cyclohexenes ; Hydrogen Bonding ; Large Molecule Systems ; Macromolecular Substances ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Molecules ; Nuclear Physics - methods ; Nuclear Physics - trends ; Oxides ; Protein Binding ; Proteins - chemistry ; Quantum Chemistry ; Quantum Theory ; Software ; Solutes ; Solvents ; The Oniom Method ; Zinc - chemistry</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2002-06, Vol.360 (1795), p.1149-1164</ispartof><rights>Copyright 2002 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-2b94e96a269a36e285f331101c6e6f28cc58be3f4d38a3ac684aa313b0a16f993</citedby><cites>FETCH-LOGICAL-c493t-2b94e96a269a36e285f331101c6e6f28cc58be3f4d38a3ac684aa313b0a16f993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3066430$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3066430$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,27901,27902,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12804271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Goodfellow, Julia</contributor><contributor>Burke, Philip</contributor><contributor>Tildesley, Dominic</contributor><contributor>Catlow, Richard</contributor><contributor>Wilson, Maggie</contributor><creatorcontrib>Morokuma, Keiji</creatorcontrib><title>New challenges in quantum chemistry: quests for accurate calculations for large molecular systems</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>As quantum chemistry plays a more and more central role in many complicated chemical problems, it has become necessary to obtain accurate results for large molecular systems. Conventional quantum chemistry methods are either too expensive to apply to large systems or too approximate for the results to be reliable, and they fail to satisfy this requirement. A variety of different approaches is being developed with the aim of achieving this goal: local correlation methods; divide-and-conquer methods; linear-scaling density functional methods based on the fast multipole and other approximations; effective potential methods; and hybrid methods. ONIOM (our N-layered integrated molecular orbital plus molecular mechanics method), developed by the authors, is a hybrid method in which a large molecular system is divided into onion-skin-like layers, and different quantum chemistry/molecular mechanics methods are used for different parts of the system; the results are combined to extrapolatively estimate the results of high-level calculation for the real system. Several applications of ONIOM will be discussed.</description><subject>Active sites</subject><subject>Algorithms</subject><subject>Atoms</subject><subject>Carbon - chemistry</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Catalysis</subject><subject>Chemical bonding</subject><subject>Chemical reactions</subject><subject>Chemistry, Physical - methods</subject><subject>Chemistry, Physical - trends</subject><subject>Computer Simulation</subject><subject>Cyclohexanes - chemistry</subject><subject>Cyclohexenes</subject><subject>Hydrogen Bonding</subject><subject>Large Molecule Systems</subject><subject>Macromolecular Substances</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molecules</subject><subject>Nuclear Physics - methods</subject><subject>Nuclear Physics - trends</subject><subject>Oxides</subject><subject>Protein Binding</subject><subject>Proteins - chemistry</subject><subject>Quantum Chemistry</subject><subject>Quantum Theory</subject><subject>Software</subject><subject>Solutes</subject><subject>Solvents</subject><subject>The Oniom Method</subject><subject>Zinc - chemistry</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQjRAVLYUrJ4Ry6i2Lv-LEnKArCkhLufDRmzXrnexmceLFdlTy73HIqlUPcLJn3pvnN89Z9oKSBSWqfu1DhAUjhC2IUvxRdkZFRQumJHuc7lyKoiT85jR7GsKeEEplyZ5kp5TVRLCKnmVwjbe52YG12G8x5G2f_xqgj0OXuti1IfrxTWphiCFvnM_BmMFDxNyANYOF2Lp-Riz4Leadszj1fR7GELELz7KTBmzA58fzPPt29f7r8mOx-vLh0_LdqjBC8ViwtRKoJDCpgEtkddlwTimhRqJsWG1MWa-RN2LDa-BgZC0AOOVrAlQ2affz7GLWPXj3169O7g1aCz26IeiK1apikifiYiYa70Lw2OiDbzvwo6ZET6HqKVQ9haqnUNPAq6PysO5wc08_ppgIfCZ4N6YVnWkxjnrvBt-n8t-yL-epfYjO36lyIqXgJMHFDKc_wN93MPifWla8KvX3WujLm6sfS3b9Wa8Sn878Xbvd3bYe9QM3qTik57lMZipVakrFlNnb_85Mho3rI_bx4aRuBmv1YdPwP-rVx0M</recordid><startdate>20020615</startdate><enddate>20020615</enddate><creator>Morokuma, Keiji</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020615</creationdate><title>New challenges in quantum chemistry: quests for accurate calculations for large molecular systems</title><author>Morokuma, Keiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-2b94e96a269a36e285f331101c6e6f28cc58be3f4d38a3ac684aa313b0a16f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Active sites</topic><topic>Algorithms</topic><topic>Atoms</topic><topic>Carbon - chemistry</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Catalysis</topic><topic>Chemical bonding</topic><topic>Chemical reactions</topic><topic>Chemistry, Physical - methods</topic><topic>Chemistry, Physical - trends</topic><topic>Computer Simulation</topic><topic>Cyclohexanes - chemistry</topic><topic>Cyclohexenes</topic><topic>Hydrogen Bonding</topic><topic>Large Molecule Systems</topic><topic>Macromolecular Substances</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molecules</topic><topic>Nuclear Physics - methods</topic><topic>Nuclear Physics - trends</topic><topic>Oxides</topic><topic>Protein Binding</topic><topic>Proteins - chemistry</topic><topic>Quantum Chemistry</topic><topic>Quantum Theory</topic><topic>Software</topic><topic>Solutes</topic><topic>Solvents</topic><topic>The Oniom Method</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morokuma, Keiji</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morokuma, Keiji</au><au>Goodfellow, Julia</au><au>Burke, Philip</au><au>Tildesley, Dominic</au><au>Catlow, Richard</au><au>Wilson, Maggie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New challenges in quantum chemistry: quests for accurate calculations for large molecular systems</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2002-06-15</date><risdate>2002</risdate><volume>360</volume><issue>1795</issue><spage>1149</spage><epage>1164</epage><pages>1149-1164</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>As quantum chemistry plays a more and more central role in many complicated chemical problems, it has become necessary to obtain accurate results for large molecular systems. Conventional quantum chemistry methods are either too expensive to apply to large systems or too approximate for the results to be reliable, and they fail to satisfy this requirement. A variety of different approaches is being developed with the aim of achieving this goal: local correlation methods; divide-and-conquer methods; linear-scaling density functional methods based on the fast multipole and other approximations; effective potential methods; and hybrid methods. ONIOM (our N-layered integrated molecular orbital plus molecular mechanics method), developed by the authors, is a hybrid method in which a large molecular system is divided into onion-skin-like layers, and different quantum chemistry/molecular mechanics methods are used for different parts of the system; the results are combined to extrapolatively estimate the results of high-level calculation for the real system. Several applications of ONIOM will be discussed.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>12804271</pmid><doi>10.1098/rsta.2002.0993</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2002-06, Vol.360 (1795), p.1149-1164 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_pubmed_primary_12804271 |
source | MEDLINE; JSTOR Mathematics & Statistics |
subjects | Active sites Algorithms Atoms Carbon - chemistry Carbon dioxide Carbon Dioxide - chemistry Catalysis Chemical bonding Chemical reactions Chemistry, Physical - methods Chemistry, Physical - trends Computer Simulation Cyclohexanes - chemistry Cyclohexenes Hydrogen Bonding Large Molecule Systems Macromolecular Substances Models, Chemical Models, Molecular Molecular Conformation Molecules Nuclear Physics - methods Nuclear Physics - trends Oxides Protein Binding Proteins - chemistry Quantum Chemistry Quantum Theory Software Solutes Solvents The Oniom Method Zinc - chemistry |
title | New challenges in quantum chemistry: quests for accurate calculations for large molecular systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20challenges%20in%20quantum%20chemistry:%20quests%20for%20accurate%20calculations%20for%20large%20molecular%20systems&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Morokuma,%20Keiji&rft.date=2002-06-15&rft.volume=360&rft.issue=1795&rft.spage=1149&rft.epage=1164&rft.pages=1149-1164&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2002.0993&rft_dat=%3Cjstor_pubme%3E3066430%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72897263&rft_id=info:pmid/12804271&rft_jstor_id=3066430&rfr_iscdi=true |