New challenges in quantum chemistry: quests for accurate calculations for large molecular systems

As quantum chemistry plays a more and more central role in many complicated chemical problems, it has become necessary to obtain accurate results for large molecular systems. Conventional quantum chemistry methods are either too expensive to apply to large systems or too approximate for the results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2002-06, Vol.360 (1795), p.1149-1164
1. Verfasser: Morokuma, Keiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1164
container_issue 1795
container_start_page 1149
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 360
creator Morokuma, Keiji
description As quantum chemistry plays a more and more central role in many complicated chemical problems, it has become necessary to obtain accurate results for large molecular systems. Conventional quantum chemistry methods are either too expensive to apply to large systems or too approximate for the results to be reliable, and they fail to satisfy this requirement. A variety of different approaches is being developed with the aim of achieving this goal: local correlation methods; divide-and-conquer methods; linear-scaling density functional methods based on the fast multipole and other approximations; effective potential methods; and hybrid methods. ONIOM (our N-layered integrated molecular orbital plus molecular mechanics method), developed by the authors, is a hybrid method in which a large molecular system is divided into onion-skin-like layers, and different quantum chemistry/molecular mechanics methods are used for different parts of the system; the results are combined to extrapolatively estimate the results of high-level calculation for the real system. Several applications of ONIOM will be discussed.
doi_str_mv 10.1098/rsta.2002.0993
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_12804271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3066430</jstor_id><sourcerecordid>3066430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-2b94e96a269a36e285f331101c6e6f28cc58be3f4d38a3ac684aa313b0a16f993</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRAVLYUrJ4Ry6i2Lv-LEnKArCkhLufDRmzXrnexmceLFdlTy73HIqlUPcLJn3pvnN89Z9oKSBSWqfu1DhAUjhC2IUvxRdkZFRQumJHuc7lyKoiT85jR7GsKeEEplyZ5kp5TVRLCKnmVwjbe52YG12G8x5G2f_xqgj0OXuti1IfrxTWphiCFvnM_BmMFDxNyANYOF2Lp-Riz4Leadszj1fR7GELELz7KTBmzA58fzPPt29f7r8mOx-vLh0_LdqjBC8ViwtRKoJDCpgEtkddlwTimhRqJsWG1MWa-RN2LDa-BgZC0AOOVrAlQ2affz7GLWPXj3169O7g1aCz26IeiK1apikifiYiYa70Lw2OiDbzvwo6ZET6HqKVQ9haqnUNPAq6PysO5wc08_ppgIfCZ4N6YVnWkxjnrvBt-n8t-yL-epfYjO36lyIqXgJMHFDKc_wN93MPifWla8KvX3WujLm6sfS3b9Wa8Sn878Xbvd3bYe9QM3qTik57lMZipVakrFlNnb_85Mho3rI_bx4aRuBmv1YdPwP-rVx0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72897263</pqid></control><display><type>article</type><title>New challenges in quantum chemistry: quests for accurate calculations for large molecular systems</title><source>MEDLINE</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Morokuma, Keiji</creator><contributor>Goodfellow, Julia ; Burke, Philip ; Tildesley, Dominic ; Catlow, Richard ; Wilson, Maggie</contributor><creatorcontrib>Morokuma, Keiji ; Goodfellow, Julia ; Burke, Philip ; Tildesley, Dominic ; Catlow, Richard ; Wilson, Maggie</creatorcontrib><description>As quantum chemistry plays a more and more central role in many complicated chemical problems, it has become necessary to obtain accurate results for large molecular systems. Conventional quantum chemistry methods are either too expensive to apply to large systems or too approximate for the results to be reliable, and they fail to satisfy this requirement. A variety of different approaches is being developed with the aim of achieving this goal: local correlation methods; divide-and-conquer methods; linear-scaling density functional methods based on the fast multipole and other approximations; effective potential methods; and hybrid methods. ONIOM (our N-layered integrated molecular orbital plus molecular mechanics method), developed by the authors, is a hybrid method in which a large molecular system is divided into onion-skin-like layers, and different quantum chemistry/molecular mechanics methods are used for different parts of the system; the results are combined to extrapolatively estimate the results of high-level calculation for the real system. Several applications of ONIOM will be discussed.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2002.0993</identifier><identifier>PMID: 12804271</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Active sites ; Algorithms ; Atoms ; Carbon - chemistry ; Carbon dioxide ; Carbon Dioxide - chemistry ; Catalysis ; Chemical bonding ; Chemical reactions ; Chemistry, Physical - methods ; Chemistry, Physical - trends ; Computer Simulation ; Cyclohexanes - chemistry ; Cyclohexenes ; Hydrogen Bonding ; Large Molecule Systems ; Macromolecular Substances ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Molecules ; Nuclear Physics - methods ; Nuclear Physics - trends ; Oxides ; Protein Binding ; Proteins - chemistry ; Quantum Chemistry ; Quantum Theory ; Software ; Solutes ; Solvents ; The Oniom Method ; Zinc - chemistry</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2002-06, Vol.360 (1795), p.1149-1164</ispartof><rights>Copyright 2002 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-2b94e96a269a36e285f331101c6e6f28cc58be3f4d38a3ac684aa313b0a16f993</citedby><cites>FETCH-LOGICAL-c493t-2b94e96a269a36e285f331101c6e6f28cc58be3f4d38a3ac684aa313b0a16f993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3066430$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3066430$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,828,27901,27902,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12804271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Goodfellow, Julia</contributor><contributor>Burke, Philip</contributor><contributor>Tildesley, Dominic</contributor><contributor>Catlow, Richard</contributor><contributor>Wilson, Maggie</contributor><creatorcontrib>Morokuma, Keiji</creatorcontrib><title>New challenges in quantum chemistry: quests for accurate calculations for large molecular systems</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>As quantum chemistry plays a more and more central role in many complicated chemical problems, it has become necessary to obtain accurate results for large molecular systems. Conventional quantum chemistry methods are either too expensive to apply to large systems or too approximate for the results to be reliable, and they fail to satisfy this requirement. A variety of different approaches is being developed with the aim of achieving this goal: local correlation methods; divide-and-conquer methods; linear-scaling density functional methods based on the fast multipole and other approximations; effective potential methods; and hybrid methods. ONIOM (our N-layered integrated molecular orbital plus molecular mechanics method), developed by the authors, is a hybrid method in which a large molecular system is divided into onion-skin-like layers, and different quantum chemistry/molecular mechanics methods are used for different parts of the system; the results are combined to extrapolatively estimate the results of high-level calculation for the real system. Several applications of ONIOM will be discussed.</description><subject>Active sites</subject><subject>Algorithms</subject><subject>Atoms</subject><subject>Carbon - chemistry</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Catalysis</subject><subject>Chemical bonding</subject><subject>Chemical reactions</subject><subject>Chemistry, Physical - methods</subject><subject>Chemistry, Physical - trends</subject><subject>Computer Simulation</subject><subject>Cyclohexanes - chemistry</subject><subject>Cyclohexenes</subject><subject>Hydrogen Bonding</subject><subject>Large Molecule Systems</subject><subject>Macromolecular Substances</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molecules</subject><subject>Nuclear Physics - methods</subject><subject>Nuclear Physics - trends</subject><subject>Oxides</subject><subject>Protein Binding</subject><subject>Proteins - chemistry</subject><subject>Quantum Chemistry</subject><subject>Quantum Theory</subject><subject>Software</subject><subject>Solutes</subject><subject>Solvents</subject><subject>The Oniom Method</subject><subject>Zinc - chemistry</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQjRAVLYUrJ4Ry6i2Lv-LEnKArCkhLufDRmzXrnexmceLFdlTy73HIqlUPcLJn3pvnN89Z9oKSBSWqfu1DhAUjhC2IUvxRdkZFRQumJHuc7lyKoiT85jR7GsKeEEplyZ5kp5TVRLCKnmVwjbe52YG12G8x5G2f_xqgj0OXuti1IfrxTWphiCFvnM_BmMFDxNyANYOF2Lp-Riz4Leadszj1fR7GELELz7KTBmzA58fzPPt29f7r8mOx-vLh0_LdqjBC8ViwtRKoJDCpgEtkddlwTimhRqJsWG1MWa-RN2LDa-BgZC0AOOVrAlQ2affz7GLWPXj3169O7g1aCz26IeiK1apikifiYiYa70Lw2OiDbzvwo6ZET6HqKVQ9haqnUNPAq6PysO5wc08_ppgIfCZ4N6YVnWkxjnrvBt-n8t-yL-epfYjO36lyIqXgJMHFDKc_wN93MPifWla8KvX3WujLm6sfS3b9Wa8Sn878Xbvd3bYe9QM3qTik57lMZipVakrFlNnb_85Mho3rI_bx4aRuBmv1YdPwP-rVx0M</recordid><startdate>20020615</startdate><enddate>20020615</enddate><creator>Morokuma, Keiji</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20020615</creationdate><title>New challenges in quantum chemistry: quests for accurate calculations for large molecular systems</title><author>Morokuma, Keiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-2b94e96a269a36e285f331101c6e6f28cc58be3f4d38a3ac684aa313b0a16f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Active sites</topic><topic>Algorithms</topic><topic>Atoms</topic><topic>Carbon - chemistry</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Catalysis</topic><topic>Chemical bonding</topic><topic>Chemical reactions</topic><topic>Chemistry, Physical - methods</topic><topic>Chemistry, Physical - trends</topic><topic>Computer Simulation</topic><topic>Cyclohexanes - chemistry</topic><topic>Cyclohexenes</topic><topic>Hydrogen Bonding</topic><topic>Large Molecule Systems</topic><topic>Macromolecular Substances</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molecules</topic><topic>Nuclear Physics - methods</topic><topic>Nuclear Physics - trends</topic><topic>Oxides</topic><topic>Protein Binding</topic><topic>Proteins - chemistry</topic><topic>Quantum Chemistry</topic><topic>Quantum Theory</topic><topic>Software</topic><topic>Solutes</topic><topic>Solvents</topic><topic>The Oniom Method</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morokuma, Keiji</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morokuma, Keiji</au><au>Goodfellow, Julia</au><au>Burke, Philip</au><au>Tildesley, Dominic</au><au>Catlow, Richard</au><au>Wilson, Maggie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New challenges in quantum chemistry: quests for accurate calculations for large molecular systems</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2002-06-15</date><risdate>2002</risdate><volume>360</volume><issue>1795</issue><spage>1149</spage><epage>1164</epage><pages>1149-1164</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>As quantum chemistry plays a more and more central role in many complicated chemical problems, it has become necessary to obtain accurate results for large molecular systems. Conventional quantum chemistry methods are either too expensive to apply to large systems or too approximate for the results to be reliable, and they fail to satisfy this requirement. A variety of different approaches is being developed with the aim of achieving this goal: local correlation methods; divide-and-conquer methods; linear-scaling density functional methods based on the fast multipole and other approximations; effective potential methods; and hybrid methods. ONIOM (our N-layered integrated molecular orbital plus molecular mechanics method), developed by the authors, is a hybrid method in which a large molecular system is divided into onion-skin-like layers, and different quantum chemistry/molecular mechanics methods are used for different parts of the system; the results are combined to extrapolatively estimate the results of high-level calculation for the real system. Several applications of ONIOM will be discussed.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>12804271</pmid><doi>10.1098/rsta.2002.0993</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2002-06, Vol.360 (1795), p.1149-1164
issn 1364-503X
1471-2962
language eng
recordid cdi_pubmed_primary_12804271
source MEDLINE; JSTOR Mathematics & Statistics
subjects Active sites
Algorithms
Atoms
Carbon - chemistry
Carbon dioxide
Carbon Dioxide - chemistry
Catalysis
Chemical bonding
Chemical reactions
Chemistry, Physical - methods
Chemistry, Physical - trends
Computer Simulation
Cyclohexanes - chemistry
Cyclohexenes
Hydrogen Bonding
Large Molecule Systems
Macromolecular Substances
Models, Chemical
Models, Molecular
Molecular Conformation
Molecules
Nuclear Physics - methods
Nuclear Physics - trends
Oxides
Protein Binding
Proteins - chemistry
Quantum Chemistry
Quantum Theory
Software
Solutes
Solvents
The Oniom Method
Zinc - chemistry
title New challenges in quantum chemistry: quests for accurate calculations for large molecular systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20challenges%20in%20quantum%20chemistry:%20quests%20for%20accurate%20calculations%20for%20large%20molecular%20systems&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Morokuma,%20Keiji&rft.date=2002-06-15&rft.volume=360&rft.issue=1795&rft.spage=1149&rft.epage=1164&rft.pages=1149-1164&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2002.0993&rft_dat=%3Cjstor_pubme%3E3066430%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72897263&rft_id=info:pmid/12804271&rft_jstor_id=3066430&rfr_iscdi=true