Na+-Activated K+ Current Contributes to Postexcitatory Hyperpolarization in Neocortical Intrinsically Bursting Neurons

  1 National Neurological Institute "C. Besta", 20133 Milan; and   2 Department of Physiological and Pharmacological Sciences, University of Pavia, 27100 Pavia, Italy Franceschetti, Silvana, Tatiana Lavazza, Giulia Curia, Patrizia Aracri, Ferruccio Panzica, Giulio Sancini, Giuliano Avanzin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2003-04, Vol.89 (4), p.2101-2111
Hauptverfasser: Franceschetti, Silvana, Lavazza, Tatiana, Curia, Giulia, Aracri, Patrizia, Panzica, Ferruccio, Sancini, Giulio, Avanzini, Giuliano, Magistretti, Jacopo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2111
container_issue 4
container_start_page 2101
container_title Journal of neurophysiology
container_volume 89
creator Franceschetti, Silvana
Lavazza, Tatiana
Curia, Giulia
Aracri, Patrizia
Panzica, Ferruccio
Sancini, Giulio
Avanzini, Giuliano
Magistretti, Jacopo
description   1 National Neurological Institute "C. Besta", 20133 Milan; and   2 Department of Physiological and Pharmacological Sciences, University of Pavia, 27100 Pavia, Italy Franceschetti, Silvana, Tatiana Lavazza, Giulia Curia, Patrizia Aracri, Ferruccio Panzica, Giulio Sancini, Giuliano Avanzini, and Jacopo Magistretti. Na + -Activated K + Current Contributes to Postexcitatory Hyperpolarization in Neocortical Intrinsically Bursting Neurons. J. Neurophysiol. 89: 2101-2111, 2003. The ionic mechanisms underlying the termination of action-potential (AP) bursts and postburst afterhyperpolarization (AHP) in intrinsically bursting (IB) neocortical neurons were investigated by performing intracellular recordings in thin slices of rat sensorimotor cortex. The blockade of Ca 2+ -activated K + currents enhanced postburst depolarizing afterpotentials, but had inconsistent and minor effects on the amplitude and duration of AHPs. On the contrary, experimental conditions resulting in reduction of voltage-dependent Na + entry into the cells caused a significant decrease of AHP amplitude. Slice perfusion with a modified artificial cerebrospinal fluid in which LiCl (40 mM) partially replaced NaCl had negligible effects on the properties of individual APs, whereas it consistently increased burst length and led to an approximately 30% reduction in the amplitude of AHPs following individual bursts or short trains of stimulus-induced APs. Experiments performed by partially replacing Na + ions with choline revealed a comparable reduction in AHP amplitude associated with an inhibition of bursting activity. Moreover, in voltage-clamp experiments carried out in both in situ and acutely isolated neurons, partial substitution of extracellular NaCl with LiCl significantly and reversibly reduced the amplitude of K + currents evoked by depolarizing stimuli above-threshold for Na + -current activation. The above effect of Na + -to-Li + substitution was not seen when voltage-gated Na + currents were blocked with TTX, indicating the presence of a specific K + -current component activated by voltage-dependent Na + (but not Li + ) influx. The above findings suggest that a Na + -activated K + current recruited by the Na + entry secondary to burst discharge significantly contributes to AHP generation and the maintenance of rhythmic burst recurrence during sustained depolarizations in neocortical IB neurons.
doi_str_mv 10.1152/jn.00695.2002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_12686580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73184029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-7d84acc558727b6dd8be8b81b08b6e9155484924ab70454da59a83af521afe503</originalsourceid><addsrcrecordid>eNp10LFv1DAYBXALgehRGFmRJxiqHLZjJ87YniitqApDmS3H-XLnk88OtlMa_noS7gQTk61Pv_eGh9BbStaUCvZx79eEVI1YM0LYM7Sab6ygopHP0Wq-sKIkdX2GXqW0J4TUgrCX6IyySlZCkhV6vNcXxaXJ9lFn6PCXC7wZYwSf8Sb4HG07Zkg4B_wtpAxPxmadQ5zwzTRAHILT0f7S2QaPrcf3EEyI2Rrt8O2S9mn5uwlfjTFl67czGWPw6TV60WuX4M3pPUffrz89bG6Ku6-fbzeXd4XhJc1F3UmujRFC1qxuq66TLchW0pbItoKGCsElbxjXbU244J0WjZal7gWjugdBynP0_tg7xPBjhJTVwSYDzmkPYUyqLqnkhDUzLI7QxJBShF4N0R50nBQlahla7b36M7Rahp79u1Px2B6g-6dPy87gwxHs7Hb300ZQw25KNriwnZYu2SiuGCV0luX_5fXo3AM85TnyN6GGri9_A37fm4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73184029</pqid></control><display><type>article</type><title>Na+-Activated K+ Current Contributes to Postexcitatory Hyperpolarization in Neocortical Intrinsically Bursting Neurons</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Franceschetti, Silvana ; Lavazza, Tatiana ; Curia, Giulia ; Aracri, Patrizia ; Panzica, Ferruccio ; Sancini, Giulio ; Avanzini, Giuliano ; Magistretti, Jacopo</creator><creatorcontrib>Franceschetti, Silvana ; Lavazza, Tatiana ; Curia, Giulia ; Aracri, Patrizia ; Panzica, Ferruccio ; Sancini, Giulio ; Avanzini, Giuliano ; Magistretti, Jacopo</creatorcontrib><description>  1 National Neurological Institute "C. Besta", 20133 Milan; and   2 Department of Physiological and Pharmacological Sciences, University of Pavia, 27100 Pavia, Italy Franceschetti, Silvana, Tatiana Lavazza, Giulia Curia, Patrizia Aracri, Ferruccio Panzica, Giulio Sancini, Giuliano Avanzini, and Jacopo Magistretti. Na + -Activated K + Current Contributes to Postexcitatory Hyperpolarization in Neocortical Intrinsically Bursting Neurons. J. Neurophysiol. 89: 2101-2111, 2003. The ionic mechanisms underlying the termination of action-potential (AP) bursts and postburst afterhyperpolarization (AHP) in intrinsically bursting (IB) neocortical neurons were investigated by performing intracellular recordings in thin slices of rat sensorimotor cortex. The blockade of Ca 2+ -activated K + currents enhanced postburst depolarizing afterpotentials, but had inconsistent and minor effects on the amplitude and duration of AHPs. On the contrary, experimental conditions resulting in reduction of voltage-dependent Na + entry into the cells caused a significant decrease of AHP amplitude. Slice perfusion with a modified artificial cerebrospinal fluid in which LiCl (40 mM) partially replaced NaCl had negligible effects on the properties of individual APs, whereas it consistently increased burst length and led to an approximately 30% reduction in the amplitude of AHPs following individual bursts or short trains of stimulus-induced APs. Experiments performed by partially replacing Na + ions with choline revealed a comparable reduction in AHP amplitude associated with an inhibition of bursting activity. Moreover, in voltage-clamp experiments carried out in both in situ and acutely isolated neurons, partial substitution of extracellular NaCl with LiCl significantly and reversibly reduced the amplitude of K + currents evoked by depolarizing stimuli above-threshold for Na + -current activation. The above effect of Na + -to-Li + substitution was not seen when voltage-gated Na + currents were blocked with TTX, indicating the presence of a specific K + -current component activated by voltage-dependent Na + (but not Li + ) influx. The above findings suggest that a Na + -activated K + current recruited by the Na + entry secondary to burst discharge significantly contributes to AHP generation and the maintenance of rhythmic burst recurrence during sustained depolarizations in neocortical IB neurons.</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.00695.2002</identifier><identifier>PMID: 12686580</identifier><language>eng</language><publisher>United States: Am Phys Soc</publisher><subject>Action Potentials - drug effects ; Action Potentials - physiology ; Animals ; Antimanic Agents - pharmacology ; Calcium - pharmacology ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Choline - pharmacology ; Lithium Chloride - pharmacology ; Nootropic Agents - pharmacology ; Patch-Clamp Techniques ; Periodicity ; Potassium - metabolism ; Potassium Channels, Calcium-Activated - physiology ; Pyramidal Cells - physiology ; Rats ; Rats, Sprague-Dawley ; Sodium - pharmacokinetics</subject><ispartof>Journal of neurophysiology, 2003-04, Vol.89 (4), p.2101-2111</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-7d84acc558727b6dd8be8b81b08b6e9155484924ab70454da59a83af521afe503</citedby><cites>FETCH-LOGICAL-c431t-7d84acc558727b6dd8be8b81b08b6e9155484924ab70454da59a83af521afe503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12686580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Franceschetti, Silvana</creatorcontrib><creatorcontrib>Lavazza, Tatiana</creatorcontrib><creatorcontrib>Curia, Giulia</creatorcontrib><creatorcontrib>Aracri, Patrizia</creatorcontrib><creatorcontrib>Panzica, Ferruccio</creatorcontrib><creatorcontrib>Sancini, Giulio</creatorcontrib><creatorcontrib>Avanzini, Giuliano</creatorcontrib><creatorcontrib>Magistretti, Jacopo</creatorcontrib><title>Na+-Activated K+ Current Contributes to Postexcitatory Hyperpolarization in Neocortical Intrinsically Bursting Neurons</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>  1 National Neurological Institute "C. Besta", 20133 Milan; and   2 Department of Physiological and Pharmacological Sciences, University of Pavia, 27100 Pavia, Italy Franceschetti, Silvana, Tatiana Lavazza, Giulia Curia, Patrizia Aracri, Ferruccio Panzica, Giulio Sancini, Giuliano Avanzini, and Jacopo Magistretti. Na + -Activated K + Current Contributes to Postexcitatory Hyperpolarization in Neocortical Intrinsically Bursting Neurons. J. Neurophysiol. 89: 2101-2111, 2003. The ionic mechanisms underlying the termination of action-potential (AP) bursts and postburst afterhyperpolarization (AHP) in intrinsically bursting (IB) neocortical neurons were investigated by performing intracellular recordings in thin slices of rat sensorimotor cortex. The blockade of Ca 2+ -activated K + currents enhanced postburst depolarizing afterpotentials, but had inconsistent and minor effects on the amplitude and duration of AHPs. On the contrary, experimental conditions resulting in reduction of voltage-dependent Na + entry into the cells caused a significant decrease of AHP amplitude. Slice perfusion with a modified artificial cerebrospinal fluid in which LiCl (40 mM) partially replaced NaCl had negligible effects on the properties of individual APs, whereas it consistently increased burst length and led to an approximately 30% reduction in the amplitude of AHPs following individual bursts or short trains of stimulus-induced APs. Experiments performed by partially replacing Na + ions with choline revealed a comparable reduction in AHP amplitude associated with an inhibition of bursting activity. Moreover, in voltage-clamp experiments carried out in both in situ and acutely isolated neurons, partial substitution of extracellular NaCl with LiCl significantly and reversibly reduced the amplitude of K + currents evoked by depolarizing stimuli above-threshold for Na + -current activation. The above effect of Na + -to-Li + substitution was not seen when voltage-gated Na + currents were blocked with TTX, indicating the presence of a specific K + -current component activated by voltage-dependent Na + (but not Li + ) influx. The above findings suggest that a Na + -activated K + current recruited by the Na + entry secondary to burst discharge significantly contributes to AHP generation and the maintenance of rhythmic burst recurrence during sustained depolarizations in neocortical IB neurons.</description><subject>Action Potentials - drug effects</subject><subject>Action Potentials - physiology</subject><subject>Animals</subject><subject>Antimanic Agents - pharmacology</subject><subject>Calcium - pharmacology</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Choline - pharmacology</subject><subject>Lithium Chloride - pharmacology</subject><subject>Nootropic Agents - pharmacology</subject><subject>Patch-Clamp Techniques</subject><subject>Periodicity</subject><subject>Potassium - metabolism</subject><subject>Potassium Channels, Calcium-Activated - physiology</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sodium - pharmacokinetics</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10LFv1DAYBXALgehRGFmRJxiqHLZjJ87YniitqApDmS3H-XLnk88OtlMa_noS7gQTk61Pv_eGh9BbStaUCvZx79eEVI1YM0LYM7Sab6ygopHP0Wq-sKIkdX2GXqW0J4TUgrCX6IyySlZCkhV6vNcXxaXJ9lFn6PCXC7wZYwSf8Sb4HG07Zkg4B_wtpAxPxmadQ5zwzTRAHILT0f7S2QaPrcf3EEyI2Rrt8O2S9mn5uwlfjTFl67czGWPw6TV60WuX4M3pPUffrz89bG6Ku6-fbzeXd4XhJc1F3UmujRFC1qxuq66TLchW0pbItoKGCsElbxjXbU244J0WjZal7gWjugdBynP0_tg7xPBjhJTVwSYDzmkPYUyqLqnkhDUzLI7QxJBShF4N0R50nBQlahla7b36M7Rahp79u1Px2B6g-6dPy87gwxHs7Hb300ZQw25KNriwnZYu2SiuGCV0luX_5fXo3AM85TnyN6GGri9_A37fm4U</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>Franceschetti, Silvana</creator><creator>Lavazza, Tatiana</creator><creator>Curia, Giulia</creator><creator>Aracri, Patrizia</creator><creator>Panzica, Ferruccio</creator><creator>Sancini, Giulio</creator><creator>Avanzini, Giuliano</creator><creator>Magistretti, Jacopo</creator><general>Am Phys Soc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20030401</creationdate><title>Na+-Activated K+ Current Contributes to Postexcitatory Hyperpolarization in Neocortical Intrinsically Bursting Neurons</title><author>Franceschetti, Silvana ; Lavazza, Tatiana ; Curia, Giulia ; Aracri, Patrizia ; Panzica, Ferruccio ; Sancini, Giulio ; Avanzini, Giuliano ; Magistretti, Jacopo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-7d84acc558727b6dd8be8b81b08b6e9155484924ab70454da59a83af521afe503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Action Potentials - drug effects</topic><topic>Action Potentials - physiology</topic><topic>Animals</topic><topic>Antimanic Agents - pharmacology</topic><topic>Calcium - pharmacology</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Choline - pharmacology</topic><topic>Lithium Chloride - pharmacology</topic><topic>Nootropic Agents - pharmacology</topic><topic>Patch-Clamp Techniques</topic><topic>Periodicity</topic><topic>Potassium - metabolism</topic><topic>Potassium Channels, Calcium-Activated - physiology</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sodium - pharmacokinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franceschetti, Silvana</creatorcontrib><creatorcontrib>Lavazza, Tatiana</creatorcontrib><creatorcontrib>Curia, Giulia</creatorcontrib><creatorcontrib>Aracri, Patrizia</creatorcontrib><creatorcontrib>Panzica, Ferruccio</creatorcontrib><creatorcontrib>Sancini, Giulio</creatorcontrib><creatorcontrib>Avanzini, Giuliano</creatorcontrib><creatorcontrib>Magistretti, Jacopo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franceschetti, Silvana</au><au>Lavazza, Tatiana</au><au>Curia, Giulia</au><au>Aracri, Patrizia</au><au>Panzica, Ferruccio</au><au>Sancini, Giulio</au><au>Avanzini, Giuliano</au><au>Magistretti, Jacopo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Na+-Activated K+ Current Contributes to Postexcitatory Hyperpolarization in Neocortical Intrinsically Bursting Neurons</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>89</volume><issue>4</issue><spage>2101</spage><epage>2111</epage><pages>2101-2111</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>  1 National Neurological Institute "C. Besta", 20133 Milan; and   2 Department of Physiological and Pharmacological Sciences, University of Pavia, 27100 Pavia, Italy Franceschetti, Silvana, Tatiana Lavazza, Giulia Curia, Patrizia Aracri, Ferruccio Panzica, Giulio Sancini, Giuliano Avanzini, and Jacopo Magistretti. Na + -Activated K + Current Contributes to Postexcitatory Hyperpolarization in Neocortical Intrinsically Bursting Neurons. J. Neurophysiol. 89: 2101-2111, 2003. The ionic mechanisms underlying the termination of action-potential (AP) bursts and postburst afterhyperpolarization (AHP) in intrinsically bursting (IB) neocortical neurons were investigated by performing intracellular recordings in thin slices of rat sensorimotor cortex. The blockade of Ca 2+ -activated K + currents enhanced postburst depolarizing afterpotentials, but had inconsistent and minor effects on the amplitude and duration of AHPs. On the contrary, experimental conditions resulting in reduction of voltage-dependent Na + entry into the cells caused a significant decrease of AHP amplitude. Slice perfusion with a modified artificial cerebrospinal fluid in which LiCl (40 mM) partially replaced NaCl had negligible effects on the properties of individual APs, whereas it consistently increased burst length and led to an approximately 30% reduction in the amplitude of AHPs following individual bursts or short trains of stimulus-induced APs. Experiments performed by partially replacing Na + ions with choline revealed a comparable reduction in AHP amplitude associated with an inhibition of bursting activity. Moreover, in voltage-clamp experiments carried out in both in situ and acutely isolated neurons, partial substitution of extracellular NaCl with LiCl significantly and reversibly reduced the amplitude of K + currents evoked by depolarizing stimuli above-threshold for Na + -current activation. The above effect of Na + -to-Li + substitution was not seen when voltage-gated Na + currents were blocked with TTX, indicating the presence of a specific K + -current component activated by voltage-dependent Na + (but not Li + ) influx. The above findings suggest that a Na + -activated K + current recruited by the Na + entry secondary to burst discharge significantly contributes to AHP generation and the maintenance of rhythmic burst recurrence during sustained depolarizations in neocortical IB neurons.</abstract><cop>United States</cop><pub>Am Phys Soc</pub><pmid>12686580</pmid><doi>10.1152/jn.00695.2002</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3077
ispartof Journal of neurophysiology, 2003-04, Vol.89 (4), p.2101-2111
issn 0022-3077
1522-1598
language eng
recordid cdi_pubmed_primary_12686580
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals
subjects Action Potentials - drug effects
Action Potentials - physiology
Animals
Antimanic Agents - pharmacology
Calcium - pharmacology
Cerebral Cortex - cytology
Cerebral Cortex - physiology
Choline - pharmacology
Lithium Chloride - pharmacology
Nootropic Agents - pharmacology
Patch-Clamp Techniques
Periodicity
Potassium - metabolism
Potassium Channels, Calcium-Activated - physiology
Pyramidal Cells - physiology
Rats
Rats, Sprague-Dawley
Sodium - pharmacokinetics
title Na+-Activated K+ Current Contributes to Postexcitatory Hyperpolarization in Neocortical Intrinsically Bursting Neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na+-Activated%20K+%20Current%20Contributes%20to%20Postexcitatory%20Hyperpolarization%20in%20Neocortical%20Intrinsically%20Bursting%20Neurons&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Franceschetti,%20Silvana&rft.date=2003-04-01&rft.volume=89&rft.issue=4&rft.spage=2101&rft.epage=2111&rft.pages=2101-2111&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.00695.2002&rft_dat=%3Cproquest_pubme%3E73184029%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=73184029&rft_id=info:pmid/12686580&rfr_iscdi=true