Functional Anatomy of the Null Hypothesis and of Tests of It

The author compared simulations of the "true" null hypothesis (z) test, in which ò was known and fixed, with the t test, in which s, an estimate of ò, was calculated from the sample because the t test was used to emulate the "true" test. The true null hypothesis test bears exclus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of general psychology 2003-01, Vol.130 (1), p.47-57
1. Verfasser: Riopelle, Arthur J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1
container_start_page 47
container_title The Journal of general psychology
container_volume 130
creator Riopelle, Arthur J.
description The author compared simulations of the "true" null hypothesis (z) test, in which ò was known and fixed, with the t test, in which s, an estimate of ò, was calculated from the sample because the t test was used to emulate the "true" test. The true null hypothesis test bears exclusively on calculating the probability that a sample distance (mean) is larger than a specified value. The results showed that the value of t was sensitive to sampling fluctuations in both distance and standard error. Large values of t reflect small standard errors when n is small. The value of t achieves sensitivity primarily to distance only when the sample sizes are large. One cannot make a definitive statement about the probability or "significance" of a distance solely on the basis of the value of t.
doi_str_mv 10.1080/00221300309601273
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_12635855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73106685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-108e2805be1278971fa2da1ae3d854b44ea45f880588d4ab675d7de6829ea7a3</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMobk4_gC9SfPCtmj9Nk8JexnBuMPRl7yFrUuxIm5mkaL-9KRsIDvTp3sv9nZObA8Atgo8IcvgEIcaIQEhgkUOEGTkDY1RkMIWc83MwHvZpBIoRuPJ-B4eZkUswQjgnlFM6BtNF15ahtq00yayVwTZ9YqskvOvktTMmWfZ7Gwdf-0S2alhttA9-aFbhGlxU0nh9c6wTsFk8b-bLdP32sprP1mmZYRrSeKvGHNKtjjfygqFKYiWR1ERxmm2zTMuMVjwSnKtMbnNGFVM657jQkkkyAQ8H272zH118XjS1L7UxstW284IRBPOc0wje_wJ3tnPxa17EnPKMMgQjhA5Q6az3Tldi7-pGul4gKIZYxUmsUXN3NO62jVY_imOOEZgegLqtrGvkp3VGiSB7Y13lZFvWXpC__Nm_8hOVCF-BfAME1pTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213645710</pqid></control><display><type>article</type><title>Functional Anatomy of the Null Hypothesis and of Tests of It</title><source>MEDLINE</source><source>Business Source Complete</source><creator>Riopelle, Arthur J.</creator><creatorcontrib>Riopelle, Arthur J.</creatorcontrib><description>The author compared simulations of the "true" null hypothesis (z) test, in which ò was known and fixed, with the t test, in which s, an estimate of ò, was calculated from the sample because the t test was used to emulate the "true" test. The true null hypothesis test bears exclusively on calculating the probability that a sample distance (mean) is larger than a specified value. The results showed that the value of t was sensitive to sampling fluctuations in both distance and standard error. Large values of t reflect small standard errors when n is small. The value of t achieves sensitivity primarily to distance only when the sample sizes are large. One cannot make a definitive statement about the probability or "significance" of a distance solely on the basis of the value of t.</description><identifier>ISSN: 0022-1309</identifier><identifier>EISSN: 1940-0888</identifier><identifier>DOI: 10.1080/00221300309601273</identifier><identifier>PMID: 12635855</identifier><identifier>CODEN: JGPSAY</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis Group</publisher><subject>Humans ; Hypotheses ; Models, Psychological ; Normal distribution ; null hypothesis ; Population ; Psychological Theory ; Psychology - methods ; Sample size ; Simulation ; simulation study ; Standard deviation ; t test</subject><ispartof>The Journal of general psychology, 2003-01, Vol.130 (1), p.47-57</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2003</rights><rights>Copyright HELDREF PUBLICATIONS Jan 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-108e2805be1278971fa2da1ae3d854b44ea45f880588d4ab675d7de6829ea7a3</citedby><cites>FETCH-LOGICAL-c425t-108e2805be1278971fa2da1ae3d854b44ea45f880588d4ab675d7de6829ea7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12635855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riopelle, Arthur J.</creatorcontrib><title>Functional Anatomy of the Null Hypothesis and of Tests of It</title><title>The Journal of general psychology</title><addtitle>J Gen Psychol</addtitle><description>The author compared simulations of the "true" null hypothesis (z) test, in which ò was known and fixed, with the t test, in which s, an estimate of ò, was calculated from the sample because the t test was used to emulate the "true" test. The true null hypothesis test bears exclusively on calculating the probability that a sample distance (mean) is larger than a specified value. The results showed that the value of t was sensitive to sampling fluctuations in both distance and standard error. Large values of t reflect small standard errors when n is small. The value of t achieves sensitivity primarily to distance only when the sample sizes are large. One cannot make a definitive statement about the probability or "significance" of a distance solely on the basis of the value of t.</description><subject>Humans</subject><subject>Hypotheses</subject><subject>Models, Psychological</subject><subject>Normal distribution</subject><subject>null hypothesis</subject><subject>Population</subject><subject>Psychological Theory</subject><subject>Psychology - methods</subject><subject>Sample size</subject><subject>Simulation</subject><subject>simulation study</subject><subject>Standard deviation</subject><subject>t test</subject><issn>0022-1309</issn><issn>1940-0888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkF9LwzAUxYMobk4_gC9SfPCtmj9Nk8JexnBuMPRl7yFrUuxIm5mkaL-9KRsIDvTp3sv9nZObA8Atgo8IcvgEIcaIQEhgkUOEGTkDY1RkMIWc83MwHvZpBIoRuPJ-B4eZkUswQjgnlFM6BtNF15ahtq00yayVwTZ9YqskvOvktTMmWfZ7Gwdf-0S2alhttA9-aFbhGlxU0nh9c6wTsFk8b-bLdP32sprP1mmZYRrSeKvGHNKtjjfygqFKYiWR1ERxmm2zTMuMVjwSnKtMbnNGFVM657jQkkkyAQ8H272zH118XjS1L7UxstW284IRBPOc0wje_wJ3tnPxa17EnPKMMgQjhA5Q6az3Tldi7-pGul4gKIZYxUmsUXN3NO62jVY_imOOEZgegLqtrGvkp3VGiSB7Y13lZFvWXpC__Nm_8hOVCF-BfAME1pTA</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Riopelle, Arthur J.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QG</scope><scope>7TK</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>88J</scope><scope>8AF</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M2R</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Functional Anatomy of the Null Hypothesis and of Tests of It</title><author>Riopelle, Arthur J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-108e2805be1278971fa2da1ae3d854b44ea45f880588d4ab675d7de6829ea7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Humans</topic><topic>Hypotheses</topic><topic>Models, Psychological</topic><topic>Normal distribution</topic><topic>null hypothesis</topic><topic>Population</topic><topic>Psychological Theory</topic><topic>Psychology - methods</topic><topic>Sample size</topic><topic>Simulation</topic><topic>simulation study</topic><topic>Standard deviation</topic><topic>t test</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riopelle, Arthur J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Social Science Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of general psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riopelle, Arthur J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Anatomy of the Null Hypothesis and of Tests of It</atitle><jtitle>The Journal of general psychology</jtitle><addtitle>J Gen Psychol</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>130</volume><issue>1</issue><spage>47</spage><epage>57</epage><pages>47-57</pages><issn>0022-1309</issn><eissn>1940-0888</eissn><coden>JGPSAY</coden><abstract>The author compared simulations of the "true" null hypothesis (z) test, in which ò was known and fixed, with the t test, in which s, an estimate of ò, was calculated from the sample because the t test was used to emulate the "true" test. The true null hypothesis test bears exclusively on calculating the probability that a sample distance (mean) is larger than a specified value. The results showed that the value of t was sensitive to sampling fluctuations in both distance and standard error. Large values of t reflect small standard errors when n is small. The value of t achieves sensitivity primarily to distance only when the sample sizes are large. One cannot make a definitive statement about the probability or "significance" of a distance solely on the basis of the value of t.</abstract><cop>United States</cop><pub>Taylor &amp; Francis Group</pub><pmid>12635855</pmid><doi>10.1080/00221300309601273</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1309
ispartof The Journal of general psychology, 2003-01, Vol.130 (1), p.47-57
issn 0022-1309
1940-0888
language eng
recordid cdi_pubmed_primary_12635855
source MEDLINE; Business Source Complete
subjects Humans
Hypotheses
Models, Psychological
Normal distribution
null hypothesis
Population
Psychological Theory
Psychology - methods
Sample size
Simulation
simulation study
Standard deviation
t test
title Functional Anatomy of the Null Hypothesis and of Tests of It
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Anatomy%20of%20the%20Null%20Hypothesis%20and%20of%20Tests%20of%20It&rft.jtitle=The%20Journal%20of%20general%20psychology&rft.au=Riopelle,%20Arthur%20J.&rft.date=2003-01-01&rft.volume=130&rft.issue=1&rft.spage=47&rft.epage=57&rft.pages=47-57&rft.issn=0022-1309&rft.eissn=1940-0888&rft.coden=JGPSAY&rft_id=info:doi/10.1080/00221300309601273&rft_dat=%3Cproquest_pubme%3E73106685%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213645710&rft_id=info:pmid/12635855&rfr_iscdi=true