Molecular basis of H2O2 resistance mediated by Streptococcal Dpr. Demonstration of the functional involvement of the putative ferroxidase center by site-directed mutagenesis in Streptococcus suis

H(2)O(2) is an unavoidable cytotoxic by-product of aerobic life. Dpr, a recently discovered member of the Dps protein family, provides a means for catalase-negative bacteria to tolerate H(2)O(2). Potentially, Dpr could bind free intracellular iron and thus inhibit the Fenton chemistry-catalyzed form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2003-03, Vol.278 (10), p.7996
Hauptverfasser: Pulliainen, Arto Tapio, Haataja, Sauli, Kähkönen, Sanni, Finne, Jukka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:H(2)O(2) is an unavoidable cytotoxic by-product of aerobic life. Dpr, a recently discovered member of the Dps protein family, provides a means for catalase-negative bacteria to tolerate H(2)O(2). Potentially, Dpr could bind free intracellular iron and thus inhibit the Fenton chemistry-catalyzed formation of toxic hydroxyl radicals (H(2)O(2) + Fe(2+) --> (.)OH + (-)OH + Fe(3+)). We explored the in vivo function of Dpr in the catalase- and NADH peroxidase-negative pig and human pathogen Streptococcus suis. We show that: (i) a Dpr allelic exchange knockout mutant was hypersensitive ( approximately 10(6)-fold) to H(2)O(2), (ii) Dpr incorporated iron in vivo, (iii) a putative ferroxidase center was present in Dpr, (iv) single amino acid substitutions D74A or E78A to the putative ferroxidase center abolished the in vivo iron incorporation, and (v) the H(2)O(2) hypersensitive phenotype was complemented by wild-type Dpr or by a membrane-permeating iron chelator, but not by the site-mutated forms of Dpr. These results demonstrate that the putative ferroxidase center of Dpr is functionally active in iron incorporation and that the H(2)O(2) resistance is mediated by Dpr in vivo by its iron binding activity.
ISSN:0021-9258
DOI:10.1074/jbc.M210174200