Preferential Induction of Apoptosis for Primary Human Leukemic Stem Cells
Acute myelogenous leukemia (AML) is typically a disease of stem/progenitor cell origin. Interestingly, the leukemic stem cell (LSC) shares many characteristics with normal hematopoietic stem cells (HSCs) including the ability to self-renew and a predominantly G0cell-cycle status. Thus, although conv...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2002-12, Vol.99 (25), p.16220-16225 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16225 |
---|---|
container_issue | 25 |
container_start_page | 16220 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 99 |
creator | Guzman, Monica L. Swiderski, Carol F. Howard, Dianna S. Grimes, Barry A. Rossi, Randall M. Szilvassy, Stephen J. Jordan, Craig T. |
description | Acute myelogenous leukemia (AML) is typically a disease of stem/progenitor cell origin. Interestingly, the leukemic stem cell (LSC) shares many characteristics with normal hematopoietic stem cells (HSCs) including the ability to self-renew and a predominantly G0cell-cycle status. Thus, although conventional chemotherapy regimens often ablate actively cycling leukemic blast cells, the primitive LSC population is likely to be drug-resistant. Moreover, given the quiescent nature of LSCs, current drugs may not effectively distinguish between malignant stem cells and normal HSCs. Nonetheless, based on recent studies of LSC molecular biology, we hypothesized that certain unique properties of leukemic cells could be exploited to induce apoptosis in the LSC population while sparing normal stem cells. In this report we describe a strategy using treatment of primary AML cells with the proteasome inhibitor carbobenzoxyl-L-leucyl-L-leucyl-L-leucinal (MG-132) and the anthracycline idarubicin. Comparison of normal and leukemic specimens using in vitro culture and in vivo xenotransplantation assays shows that the combination of these two agents induces rapid and extensive apoptosis of the LSC population while leaving normal HSCs viable. Molecular genetic studies using a dominant-negative allele of inhibitor of nuclear factor κB (IκBα) demonstrate that inhibition of nuclear factor κB (NF-κB) contributes to apoptosis induction. In addition, gene-expression analyses suggest that activation of p53-regulated genes are also involved in LSC apoptosis. Collectively, these findings demonstrate that malignant stem cells can be preferentially targeted for ablation. Further, the data begin to elucidate the molecular mechanisms that underlie LSC-specific apoptosis and suggest new directions for AML therapy. |
doi_str_mv | 10.1073/pnas.252462599 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_12451177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3073935</jstor_id><sourcerecordid>3073935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-ca18d92146d65691774585a82ff1222953be2a1e44c91b4749a2e2a224f8d1b53</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS1ERZfClRMCqwfUSxbPxE7sA4dqBXSllVoJera8iQNZkji1HUT_fb3a7Zb20JMlz_ee3swj5B2wObAy_zwOJsxRIC9QKPWCzIApyAqu2EsyYwzLTHLkx-R1CBvGmBKSvSLHgFwAlOWMLK-8bay3Q2xNR5dDPVWxdQN1DT0f3RhdaANtnKdXvu2Nv6UXU28GurLTH9u3Ff0RbU8XtuvCG3LUmC7Yt_v3hFx_-_pzcZGtLr8vF-errBKyjFllQNYKgRd1IQqVQnAhhZHYNICISuRriwYs55WCNS-5Mpg-EHkja1iL_IR82fmO07q3dZWie9PpcZdPO9Pqx5Oh_a1_ub8acikUJv2nvd67m8mGqPs2VGkDM1g3BQ1KJRBkAk-fgBs3-SHtppEBZ3nBt27zHVR5F0K65SEIML1tSG8b0oeGkuDD__Ef8H0lCTjbA1vh_Vip5KGhQGS6mbou2n8xoR-fRxPxfkdsQnT-gOQpmMpFfgf0XK2U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201403642</pqid></control><display><type>article</type><title>Preferential Induction of Apoptosis for Primary Human Leukemic Stem Cells</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Guzman, Monica L. ; Swiderski, Carol F. ; Howard, Dianna S. ; Grimes, Barry A. ; Rossi, Randall M. ; Szilvassy, Stephen J. ; Jordan, Craig T.</creator><creatorcontrib>Guzman, Monica L. ; Swiderski, Carol F. ; Howard, Dianna S. ; Grimes, Barry A. ; Rossi, Randall M. ; Szilvassy, Stephen J. ; Jordan, Craig T.</creatorcontrib><description>Acute myelogenous leukemia (AML) is typically a disease of stem/progenitor cell origin. Interestingly, the leukemic stem cell (LSC) shares many characteristics with normal hematopoietic stem cells (HSCs) including the ability to self-renew and a predominantly G0cell-cycle status. Thus, although conventional chemotherapy regimens often ablate actively cycling leukemic blast cells, the primitive LSC population is likely to be drug-resistant. Moreover, given the quiescent nature of LSCs, current drugs may not effectively distinguish between malignant stem cells and normal HSCs. Nonetheless, based on recent studies of LSC molecular biology, we hypothesized that certain unique properties of leukemic cells could be exploited to induce apoptosis in the LSC population while sparing normal stem cells. In this report we describe a strategy using treatment of primary AML cells with the proteasome inhibitor carbobenzoxyl-L-leucyl-L-leucyl-L-leucinal (MG-132) and the anthracycline idarubicin. Comparison of normal and leukemic specimens using in vitro culture and in vivo xenotransplantation assays shows that the combination of these two agents induces rapid and extensive apoptosis of the LSC population while leaving normal HSCs viable. Molecular genetic studies using a dominant-negative allele of inhibitor of nuclear factor κB (IκBα) demonstrate that inhibition of nuclear factor κB (NF-κB) contributes to apoptosis induction. In addition, gene-expression analyses suggest that activation of p53-regulated genes are also involved in LSC apoptosis. Collectively, these findings demonstrate that malignant stem cells can be preferentially targeted for ablation. Further, the data begin to elucidate the molecular mechanisms that underlie LSC-specific apoptosis and suggest new directions for AML therapy.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.252462599</identifier><identifier>PMID: 12451177</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acute Disease ; Alleles ; Animals ; Anthracyclines ; Antibiotics, Antineoplastic - pharmacology ; Apoptosis ; Apoptosis - drug effects ; Biological Sciences ; Blood ; Bone marrow ; Cellular biology ; Cultured cells ; Cysteine Endopeptidases ; Cysteine Proteinase Inhibitors - pharmacology ; Gene Expression Regulation, Leukemic - drug effects ; Graft Survival ; Hematopoietic stem cells ; Hematopoietic Stem Cells - drug effects ; Hematopoietic Stem Cells - pathology ; Humans ; I-kappa B Proteins - genetics ; I-kappa B Proteins - physiology ; Idarubicin - pharmacology ; Leukemia ; Leukemia, Myeloid - pathology ; Leukocytes - drug effects ; Leukocytes - pathology ; Leupeptins - pharmacology ; Medical research ; Mice ; Mice, Inbred NOD ; Mice, SCID ; Multienzyme Complexes - antagonists & inhibitors ; Myeloid leukemia ; Neoplasm Proteins - antagonists & inhibitors ; Neoplasm Proteins - physiology ; Neoplasm Transplantation ; Neoplastic Stem Cells - drug effects ; Neoplastic Stem Cells - pathology ; NF-kappa B - antagonists & inhibitors ; Proteasome Endopeptidase Complex ; Recombinant Fusion Proteins - physiology ; Specimens ; Stem cells ; Tumor Suppressor Protein p53 - physiology ; Viability</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2002-12, Vol.99 (25), p.16220-16225</ispartof><rights>Copyright 1993-2002 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 10, 2002</rights><rights>Copyright © 2002, The National Academy of Sciences 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-ca18d92146d65691774585a82ff1222953be2a1e44c91b4749a2e2a224f8d1b53</citedby><cites>FETCH-LOGICAL-c587t-ca18d92146d65691774585a82ff1222953be2a1e44c91b4749a2e2a224f8d1b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/99/25.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3073935$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3073935$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12451177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guzman, Monica L.</creatorcontrib><creatorcontrib>Swiderski, Carol F.</creatorcontrib><creatorcontrib>Howard, Dianna S.</creatorcontrib><creatorcontrib>Grimes, Barry A.</creatorcontrib><creatorcontrib>Rossi, Randall M.</creatorcontrib><creatorcontrib>Szilvassy, Stephen J.</creatorcontrib><creatorcontrib>Jordan, Craig T.</creatorcontrib><title>Preferential Induction of Apoptosis for Primary Human Leukemic Stem Cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Acute myelogenous leukemia (AML) is typically a disease of stem/progenitor cell origin. Interestingly, the leukemic stem cell (LSC) shares many characteristics with normal hematopoietic stem cells (HSCs) including the ability to self-renew and a predominantly G0cell-cycle status. Thus, although conventional chemotherapy regimens often ablate actively cycling leukemic blast cells, the primitive LSC population is likely to be drug-resistant. Moreover, given the quiescent nature of LSCs, current drugs may not effectively distinguish between malignant stem cells and normal HSCs. Nonetheless, based on recent studies of LSC molecular biology, we hypothesized that certain unique properties of leukemic cells could be exploited to induce apoptosis in the LSC population while sparing normal stem cells. In this report we describe a strategy using treatment of primary AML cells with the proteasome inhibitor carbobenzoxyl-L-leucyl-L-leucyl-L-leucinal (MG-132) and the anthracycline idarubicin. Comparison of normal and leukemic specimens using in vitro culture and in vivo xenotransplantation assays shows that the combination of these two agents induces rapid and extensive apoptosis of the LSC population while leaving normal HSCs viable. Molecular genetic studies using a dominant-negative allele of inhibitor of nuclear factor κB (IκBα) demonstrate that inhibition of nuclear factor κB (NF-κB) contributes to apoptosis induction. In addition, gene-expression analyses suggest that activation of p53-regulated genes are also involved in LSC apoptosis. Collectively, these findings demonstrate that malignant stem cells can be preferentially targeted for ablation. Further, the data begin to elucidate the molecular mechanisms that underlie LSC-specific apoptosis and suggest new directions for AML therapy.</description><subject>Acute Disease</subject><subject>Alleles</subject><subject>Animals</subject><subject>Anthracyclines</subject><subject>Antibiotics, Antineoplastic - pharmacology</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Biological Sciences</subject><subject>Blood</subject><subject>Bone marrow</subject><subject>Cellular biology</subject><subject>Cultured cells</subject><subject>Cysteine Endopeptidases</subject><subject>Cysteine Proteinase Inhibitors - pharmacology</subject><subject>Gene Expression Regulation, Leukemic - drug effects</subject><subject>Graft Survival</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - drug effects</subject><subject>Hematopoietic Stem Cells - pathology</subject><subject>Humans</subject><subject>I-kappa B Proteins - genetics</subject><subject>I-kappa B Proteins - physiology</subject><subject>Idarubicin - pharmacology</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid - pathology</subject><subject>Leukocytes - drug effects</subject><subject>Leukocytes - pathology</subject><subject>Leupeptins - pharmacology</subject><subject>Medical research</subject><subject>Mice</subject><subject>Mice, Inbred NOD</subject><subject>Mice, SCID</subject><subject>Multienzyme Complexes - antagonists & inhibitors</subject><subject>Myeloid leukemia</subject><subject>Neoplasm Proteins - antagonists & inhibitors</subject><subject>Neoplasm Proteins - physiology</subject><subject>Neoplasm Transplantation</subject><subject>Neoplastic Stem Cells - drug effects</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>NF-kappa B - antagonists & inhibitors</subject><subject>Proteasome Endopeptidase Complex</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>Specimens</subject><subject>Stem cells</subject><subject>Tumor Suppressor Protein p53 - physiology</subject><subject>Viability</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFv1DAQhS1ERZfClRMCqwfUSxbPxE7sA4dqBXSllVoJera8iQNZkji1HUT_fb3a7Zb20JMlz_ee3swj5B2wObAy_zwOJsxRIC9QKPWCzIApyAqu2EsyYwzLTHLkx-R1CBvGmBKSvSLHgFwAlOWMLK-8bay3Q2xNR5dDPVWxdQN1DT0f3RhdaANtnKdXvu2Nv6UXU28GurLTH9u3Ff0RbU8XtuvCG3LUmC7Yt_v3hFx_-_pzcZGtLr8vF-errBKyjFllQNYKgRd1IQqVQnAhhZHYNICISuRriwYs55WCNS-5Mpg-EHkja1iL_IR82fmO07q3dZWie9PpcZdPO9Pqx5Oh_a1_ub8acikUJv2nvd67m8mGqPs2VGkDM1g3BQ1KJRBkAk-fgBs3-SHtppEBZ3nBt27zHVR5F0K65SEIML1tSG8b0oeGkuDD__Ef8H0lCTjbA1vh_Vip5KGhQGS6mbou2n8xoR-fRxPxfkdsQnT-gOQpmMpFfgf0XK2U</recordid><startdate>20021210</startdate><enddate>20021210</enddate><creator>Guzman, Monica L.</creator><creator>Swiderski, Carol F.</creator><creator>Howard, Dianna S.</creator><creator>Grimes, Barry A.</creator><creator>Rossi, Randall M.</creator><creator>Szilvassy, Stephen J.</creator><creator>Jordan, Craig T.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20021210</creationdate><title>Preferential Induction of Apoptosis for Primary Human Leukemic Stem Cells</title><author>Guzman, Monica L. ; Swiderski, Carol F. ; Howard, Dianna S. ; Grimes, Barry A. ; Rossi, Randall M. ; Szilvassy, Stephen J. ; Jordan, Craig T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-ca18d92146d65691774585a82ff1222953be2a1e44c91b4749a2e2a224f8d1b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Acute Disease</topic><topic>Alleles</topic><topic>Animals</topic><topic>Anthracyclines</topic><topic>Antibiotics, Antineoplastic - pharmacology</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Biological Sciences</topic><topic>Blood</topic><topic>Bone marrow</topic><topic>Cellular biology</topic><topic>Cultured cells</topic><topic>Cysteine Endopeptidases</topic><topic>Cysteine Proteinase Inhibitors - pharmacology</topic><topic>Gene Expression Regulation, Leukemic - drug effects</topic><topic>Graft Survival</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - drug effects</topic><topic>Hematopoietic Stem Cells - pathology</topic><topic>Humans</topic><topic>I-kappa B Proteins - genetics</topic><topic>I-kappa B Proteins - physiology</topic><topic>Idarubicin - pharmacology</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid - pathology</topic><topic>Leukocytes - drug effects</topic><topic>Leukocytes - pathology</topic><topic>Leupeptins - pharmacology</topic><topic>Medical research</topic><topic>Mice</topic><topic>Mice, Inbred NOD</topic><topic>Mice, SCID</topic><topic>Multienzyme Complexes - antagonists & inhibitors</topic><topic>Myeloid leukemia</topic><topic>Neoplasm Proteins - antagonists & inhibitors</topic><topic>Neoplasm Proteins - physiology</topic><topic>Neoplasm Transplantation</topic><topic>Neoplastic Stem Cells - drug effects</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>NF-kappa B - antagonists & inhibitors</topic><topic>Proteasome Endopeptidase Complex</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>Specimens</topic><topic>Stem cells</topic><topic>Tumor Suppressor Protein p53 - physiology</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guzman, Monica L.</creatorcontrib><creatorcontrib>Swiderski, Carol F.</creatorcontrib><creatorcontrib>Howard, Dianna S.</creatorcontrib><creatorcontrib>Grimes, Barry A.</creatorcontrib><creatorcontrib>Rossi, Randall M.</creatorcontrib><creatorcontrib>Szilvassy, Stephen J.</creatorcontrib><creatorcontrib>Jordan, Craig T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guzman, Monica L.</au><au>Swiderski, Carol F.</au><au>Howard, Dianna S.</au><au>Grimes, Barry A.</au><au>Rossi, Randall M.</au><au>Szilvassy, Stephen J.</au><au>Jordan, Craig T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preferential Induction of Apoptosis for Primary Human Leukemic Stem Cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2002-12-10</date><risdate>2002</risdate><volume>99</volume><issue>25</issue><spage>16220</spage><epage>16225</epage><pages>16220-16225</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Acute myelogenous leukemia (AML) is typically a disease of stem/progenitor cell origin. Interestingly, the leukemic stem cell (LSC) shares many characteristics with normal hematopoietic stem cells (HSCs) including the ability to self-renew and a predominantly G0cell-cycle status. Thus, although conventional chemotherapy regimens often ablate actively cycling leukemic blast cells, the primitive LSC population is likely to be drug-resistant. Moreover, given the quiescent nature of LSCs, current drugs may not effectively distinguish between malignant stem cells and normal HSCs. Nonetheless, based on recent studies of LSC molecular biology, we hypothesized that certain unique properties of leukemic cells could be exploited to induce apoptosis in the LSC population while sparing normal stem cells. In this report we describe a strategy using treatment of primary AML cells with the proteasome inhibitor carbobenzoxyl-L-leucyl-L-leucyl-L-leucinal (MG-132) and the anthracycline idarubicin. Comparison of normal and leukemic specimens using in vitro culture and in vivo xenotransplantation assays shows that the combination of these two agents induces rapid and extensive apoptosis of the LSC population while leaving normal HSCs viable. Molecular genetic studies using a dominant-negative allele of inhibitor of nuclear factor κB (IκBα) demonstrate that inhibition of nuclear factor κB (NF-κB) contributes to apoptosis induction. In addition, gene-expression analyses suggest that activation of p53-regulated genes are also involved in LSC apoptosis. Collectively, these findings demonstrate that malignant stem cells can be preferentially targeted for ablation. Further, the data begin to elucidate the molecular mechanisms that underlie LSC-specific apoptosis and suggest new directions for AML therapy.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12451177</pmid><doi>10.1073/pnas.252462599</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2002-12, Vol.99 (25), p.16220-16225 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_12451177 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acute Disease Alleles Animals Anthracyclines Antibiotics, Antineoplastic - pharmacology Apoptosis Apoptosis - drug effects Biological Sciences Blood Bone marrow Cellular biology Cultured cells Cysteine Endopeptidases Cysteine Proteinase Inhibitors - pharmacology Gene Expression Regulation, Leukemic - drug effects Graft Survival Hematopoietic stem cells Hematopoietic Stem Cells - drug effects Hematopoietic Stem Cells - pathology Humans I-kappa B Proteins - genetics I-kappa B Proteins - physiology Idarubicin - pharmacology Leukemia Leukemia, Myeloid - pathology Leukocytes - drug effects Leukocytes - pathology Leupeptins - pharmacology Medical research Mice Mice, Inbred NOD Mice, SCID Multienzyme Complexes - antagonists & inhibitors Myeloid leukemia Neoplasm Proteins - antagonists & inhibitors Neoplasm Proteins - physiology Neoplasm Transplantation Neoplastic Stem Cells - drug effects Neoplastic Stem Cells - pathology NF-kappa B - antagonists & inhibitors Proteasome Endopeptidase Complex Recombinant Fusion Proteins - physiology Specimens Stem cells Tumor Suppressor Protein p53 - physiology Viability |
title | Preferential Induction of Apoptosis for Primary Human Leukemic Stem Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preferential%20Induction%20of%20Apoptosis%20for%20Primary%20Human%20Leukemic%20Stem%20Cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Guzman,%20Monica%20L.&rft.date=2002-12-10&rft.volume=99&rft.issue=25&rft.spage=16220&rft.epage=16225&rft.pages=16220-16225&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.252462599&rft_dat=%3Cjstor_pubme%3E3073935%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201403642&rft_id=info:pmid/12451177&rft_jstor_id=3073935&rfr_iscdi=true |