Megakaryocytes Derived from Embryonic Stem Cells Implicate CalDAG-GEFI in Integrin Signaling

Fibrinogen binding to integrin αIIbβ3 mediates platelet aggregation and requires agonist-induced "inside-out" signals that increase αIIbβ3 affinity. Agonist regulation of αIIbβ3 also takes place in megakaryocytes, the bone marrow cells from which platelets are derived. To facilitate mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2002-10, Vol.99 (20), p.12819-12824
Hauptverfasser: Eto, Koji, Murphy, Ronan, Kerrigan, Steve W., Bertoni, Alessandra, Stuhlmann, Heidi, Nakano, Toru, Leavitt, Andrew D., Shattil, Sanford J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12824
container_issue 20
container_start_page 12819
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 99
creator Eto, Koji
Murphy, Ronan
Kerrigan, Steve W.
Bertoni, Alessandra
Stuhlmann, Heidi
Nakano, Toru
Leavitt, Andrew D.
Shattil, Sanford J.
description Fibrinogen binding to integrin αIIbβ3 mediates platelet aggregation and requires agonist-induced "inside-out" signals that increase αIIbβ3 affinity. Agonist regulation of αIIbβ3 also takes place in megakaryocytes, the bone marrow cells from which platelets are derived. To facilitate mechanistic studies of inside-out signaling, we describe here the generation of megakaryocytes in quantity from murine embryonic stem (ES) cells. Coculture of ES cells for 8-12 days with OP9 stromal cells in the presence of thrombopoietin, IL-6, and IL-11 resulted in the development of large, polyploid megakaryocytes that produced proplatelets. These cells expressed αIIbβ3 and platelet glycoprotein Ibα but were devoid of hematopoietic stem cell, erythrocyte, and leukocyte markers. Mature megakaryocytes, but not megakaryocyte progenitors, specifically bound fibrinogen by way of αIIbβ3 in response to platelet agonists. Retrovirus-mediated expression of the reporter gene, green fluorescent protein, in ES cell-derived megakaryocytes did not affect viability or αIIbβ3 function. On the other hand, retroviral expression of CalDAG-GEFI, a Rap1 exchange factor identified by megakaryocyte gene profiling as a candidate integrin regulator, enhanced agonist-induced activation of Rap1b and fibrinogen binding to αIIbβ3 (P < 0.01). These results establish that ES cells are a ready source of mature megakaryocytes for integrin studies and other biological applications, and they implicate CalDAG-GEFI in inside-out signaling to αIIbβ3.
doi_str_mv 10.1073/pnas.202380099
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_12239348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3073306</jstor_id><sourcerecordid>3073306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-4e6aa7cdbff405b7dd9c4616adc59c9d0022b7a960acff299d4f43d69eb08f4d3</originalsourceid><addsrcrecordid>eNp9kUtvEzEUhS0EoqFlywqBV4jNpH7NwwsWVZqGSEUsCjsky-PH4OLxpLZT0X-Po4RAN135Suc71_foAPAGozlGLT3fBJnmBBHaIcT5MzDDiOOqYRw9BzOESFt1jLAT8CqlW1SQukMvwQkmhHLKuhn48cUM8peMD5N6yCbBSxPdvdHQxmmEy7EvQnAK3mQzwoXxPsH1uPFOyWzgQvrLi1W1Wl6toQtwHbIZYhlu3BCkd2E4Ay-s9Mm8Pryn4PvV8tvic3X9dbVeXFxXqiY8V8w0UrZK99YyVPet1lyxBjdSq5orrksM0reSN0gqawnnmllGdcNNjzrLND0Fn_Z7N9t-NFqZkKP0YhPdWJKJSTrxWAnupxime4Epqhkt_g8Hf5zutiZlMbqkSloZzLRNoiWYNTXegfM9qOKUUjT2-AdGYteH2PUhjn0Uw7v_L_uHHwoowMcDsDP-lTkvOwrUYS7s1vtsfueCvn8aLcTbPXGb8hSPCC2HUdTQP9Kpqik</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72146513</pqid></control><display><type>article</type><title>Megakaryocytes Derived from Embryonic Stem Cells Implicate CalDAG-GEFI in Integrin Signaling</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Eto, Koji ; Murphy, Ronan ; Kerrigan, Steve W. ; Bertoni, Alessandra ; Stuhlmann, Heidi ; Nakano, Toru ; Leavitt, Andrew D. ; Shattil, Sanford J.</creator><creatorcontrib>Eto, Koji ; Murphy, Ronan ; Kerrigan, Steve W. ; Bertoni, Alessandra ; Stuhlmann, Heidi ; Nakano, Toru ; Leavitt, Andrew D. ; Shattil, Sanford J.</creatorcontrib><description>Fibrinogen binding to integrin αIIbβ3 mediates platelet aggregation and requires agonist-induced "inside-out" signals that increase αIIbβ3 affinity. Agonist regulation of αIIbβ3 also takes place in megakaryocytes, the bone marrow cells from which platelets are derived. To facilitate mechanistic studies of inside-out signaling, we describe here the generation of megakaryocytes in quantity from murine embryonic stem (ES) cells. Coculture of ES cells for 8-12 days with OP9 stromal cells in the presence of thrombopoietin, IL-6, and IL-11 resulted in the development of large, polyploid megakaryocytes that produced proplatelets. These cells expressed αIIbβ3 and platelet glycoprotein Ibα but were devoid of hematopoietic stem cell, erythrocyte, and leukocyte markers. Mature megakaryocytes, but not megakaryocyte progenitors, specifically bound fibrinogen by way of αIIbβ3 in response to platelet agonists. Retrovirus-mediated expression of the reporter gene, green fluorescent protein, in ES cell-derived megakaryocytes did not affect viability or αIIbβ3 function. On the other hand, retroviral expression of CalDAG-GEFI, a Rap1 exchange factor identified by megakaryocyte gene profiling as a candidate integrin regulator, enhanced agonist-induced activation of Rap1b and fibrinogen binding to αIIbβ3 (P &lt; 0.01). These results establish that ES cells are a ready source of mature megakaryocytes for integrin studies and other biological applications, and they implicate CalDAG-GEFI in inside-out signaling to αIIbβ3.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.202380099</identifier><identifier>PMID: 12239348</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; B lymphocytes ; Biological Sciences ; Bone marrow cells ; Cell Differentiation ; Cell Division ; Cells ; Cells, Cultured ; Cellular differentiation ; Feeder cells ; Fibrinogen - metabolism ; Flow Cytometry ; Green Fluorescent Proteins ; Guanine Nucleotide Exchange Factors - metabolism ; Guanine Nucleotide Exchange Factors - physiology ; Humans ; Integrins - metabolism ; Luminescent Proteins - metabolism ; Megakaryocytes ; Megakaryocytes - cytology ; Megakaryocytes - metabolism ; Mice ; Multipotent stem cells ; Peptides - chemistry ; Platelet Glycoprotein GPIIb-IIIa Complex - metabolism ; Platelets ; rap1 GTP-Binding Proteins - metabolism ; Retroviridae - genetics ; Signal Transduction ; Stem cells ; Stem Cells - cytology ; Stromal cells ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2002-10, Vol.99 (20), p.12819-12824</ispartof><rights>Copyright 1993-2002 National Academy of Sciences of the United States of America</rights><rights>Copyright © 2002, The National Academy of Sciences 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-4e6aa7cdbff405b7dd9c4616adc59c9d0022b7a960acff299d4f43d69eb08f4d3</citedby><cites>FETCH-LOGICAL-c529t-4e6aa7cdbff405b7dd9c4616adc59c9d0022b7a960acff299d4f43d69eb08f4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/99/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3073306$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3073306$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12239348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eto, Koji</creatorcontrib><creatorcontrib>Murphy, Ronan</creatorcontrib><creatorcontrib>Kerrigan, Steve W.</creatorcontrib><creatorcontrib>Bertoni, Alessandra</creatorcontrib><creatorcontrib>Stuhlmann, Heidi</creatorcontrib><creatorcontrib>Nakano, Toru</creatorcontrib><creatorcontrib>Leavitt, Andrew D.</creatorcontrib><creatorcontrib>Shattil, Sanford J.</creatorcontrib><title>Megakaryocytes Derived from Embryonic Stem Cells Implicate CalDAG-GEFI in Integrin Signaling</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Fibrinogen binding to integrin αIIbβ3 mediates platelet aggregation and requires agonist-induced "inside-out" signals that increase αIIbβ3 affinity. Agonist regulation of αIIbβ3 also takes place in megakaryocytes, the bone marrow cells from which platelets are derived. To facilitate mechanistic studies of inside-out signaling, we describe here the generation of megakaryocytes in quantity from murine embryonic stem (ES) cells. Coculture of ES cells for 8-12 days with OP9 stromal cells in the presence of thrombopoietin, IL-6, and IL-11 resulted in the development of large, polyploid megakaryocytes that produced proplatelets. These cells expressed αIIbβ3 and platelet glycoprotein Ibα but were devoid of hematopoietic stem cell, erythrocyte, and leukocyte markers. Mature megakaryocytes, but not megakaryocyte progenitors, specifically bound fibrinogen by way of αIIbβ3 in response to platelet agonists. Retrovirus-mediated expression of the reporter gene, green fluorescent protein, in ES cell-derived megakaryocytes did not affect viability or αIIbβ3 function. On the other hand, retroviral expression of CalDAG-GEFI, a Rap1 exchange factor identified by megakaryocyte gene profiling as a candidate integrin regulator, enhanced agonist-induced activation of Rap1b and fibrinogen binding to αIIbβ3 (P &lt; 0.01). These results establish that ES cells are a ready source of mature megakaryocytes for integrin studies and other biological applications, and they implicate CalDAG-GEFI in inside-out signaling to αIIbβ3.</description><subject>Animals</subject><subject>B lymphocytes</subject><subject>Biological Sciences</subject><subject>Bone marrow cells</subject><subject>Cell Differentiation</subject><subject>Cell Division</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Cellular differentiation</subject><subject>Feeder cells</subject><subject>Fibrinogen - metabolism</subject><subject>Flow Cytometry</subject><subject>Green Fluorescent Proteins</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Guanine Nucleotide Exchange Factors - physiology</subject><subject>Humans</subject><subject>Integrins - metabolism</subject><subject>Luminescent Proteins - metabolism</subject><subject>Megakaryocytes</subject><subject>Megakaryocytes - cytology</subject><subject>Megakaryocytes - metabolism</subject><subject>Mice</subject><subject>Multipotent stem cells</subject><subject>Peptides - chemistry</subject><subject>Platelet Glycoprotein GPIIb-IIIa Complex - metabolism</subject><subject>Platelets</subject><subject>rap1 GTP-Binding Proteins - metabolism</subject><subject>Retroviridae - genetics</subject><subject>Signal Transduction</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stromal cells</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtvEzEUhS0EoqFlywqBV4jNpH7NwwsWVZqGSEUsCjsky-PH4OLxpLZT0X-Po4RAN135Suc71_foAPAGozlGLT3fBJnmBBHaIcT5MzDDiOOqYRw9BzOESFt1jLAT8CqlW1SQukMvwQkmhHLKuhn48cUM8peMD5N6yCbBSxPdvdHQxmmEy7EvQnAK3mQzwoXxPsH1uPFOyWzgQvrLi1W1Wl6toQtwHbIZYhlu3BCkd2E4Ay-s9Mm8Pryn4PvV8tvic3X9dbVeXFxXqiY8V8w0UrZK99YyVPet1lyxBjdSq5orrksM0reSN0gqawnnmllGdcNNjzrLND0Fn_Z7N9t-NFqZkKP0YhPdWJKJSTrxWAnupxime4Epqhkt_g8Hf5zutiZlMbqkSloZzLRNoiWYNTXegfM9qOKUUjT2-AdGYteH2PUhjn0Uw7v_L_uHHwoowMcDsDP-lTkvOwrUYS7s1vtsfueCvn8aLcTbPXGb8hSPCC2HUdTQP9Kpqik</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Eto, Koji</creator><creator>Murphy, Ronan</creator><creator>Kerrigan, Steve W.</creator><creator>Bertoni, Alessandra</creator><creator>Stuhlmann, Heidi</creator><creator>Nakano, Toru</creator><creator>Leavitt, Andrew D.</creator><creator>Shattil, Sanford J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20021001</creationdate><title>Megakaryocytes Derived from Embryonic Stem Cells Implicate CalDAG-GEFI in Integrin Signaling</title><author>Eto, Koji ; Murphy, Ronan ; Kerrigan, Steve W. ; Bertoni, Alessandra ; Stuhlmann, Heidi ; Nakano, Toru ; Leavitt, Andrew D. ; Shattil, Sanford J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-4e6aa7cdbff405b7dd9c4616adc59c9d0022b7a960acff299d4f43d69eb08f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>B lymphocytes</topic><topic>Biological Sciences</topic><topic>Bone marrow cells</topic><topic>Cell Differentiation</topic><topic>Cell Division</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Cellular differentiation</topic><topic>Feeder cells</topic><topic>Fibrinogen - metabolism</topic><topic>Flow Cytometry</topic><topic>Green Fluorescent Proteins</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Guanine Nucleotide Exchange Factors - physiology</topic><topic>Humans</topic><topic>Integrins - metabolism</topic><topic>Luminescent Proteins - metabolism</topic><topic>Megakaryocytes</topic><topic>Megakaryocytes - cytology</topic><topic>Megakaryocytes - metabolism</topic><topic>Mice</topic><topic>Multipotent stem cells</topic><topic>Peptides - chemistry</topic><topic>Platelet Glycoprotein GPIIb-IIIa Complex - metabolism</topic><topic>Platelets</topic><topic>rap1 GTP-Binding Proteins - metabolism</topic><topic>Retroviridae - genetics</topic><topic>Signal Transduction</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stromal cells</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eto, Koji</creatorcontrib><creatorcontrib>Murphy, Ronan</creatorcontrib><creatorcontrib>Kerrigan, Steve W.</creatorcontrib><creatorcontrib>Bertoni, Alessandra</creatorcontrib><creatorcontrib>Stuhlmann, Heidi</creatorcontrib><creatorcontrib>Nakano, Toru</creatorcontrib><creatorcontrib>Leavitt, Andrew D.</creatorcontrib><creatorcontrib>Shattil, Sanford J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eto, Koji</au><au>Murphy, Ronan</au><au>Kerrigan, Steve W.</au><au>Bertoni, Alessandra</au><au>Stuhlmann, Heidi</au><au>Nakano, Toru</au><au>Leavitt, Andrew D.</au><au>Shattil, Sanford J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Megakaryocytes Derived from Embryonic Stem Cells Implicate CalDAG-GEFI in Integrin Signaling</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2002-10-01</date><risdate>2002</risdate><volume>99</volume><issue>20</issue><spage>12819</spage><epage>12824</epage><pages>12819-12824</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Fibrinogen binding to integrin αIIbβ3 mediates platelet aggregation and requires agonist-induced "inside-out" signals that increase αIIbβ3 affinity. Agonist regulation of αIIbβ3 also takes place in megakaryocytes, the bone marrow cells from which platelets are derived. To facilitate mechanistic studies of inside-out signaling, we describe here the generation of megakaryocytes in quantity from murine embryonic stem (ES) cells. Coculture of ES cells for 8-12 days with OP9 stromal cells in the presence of thrombopoietin, IL-6, and IL-11 resulted in the development of large, polyploid megakaryocytes that produced proplatelets. These cells expressed αIIbβ3 and platelet glycoprotein Ibα but were devoid of hematopoietic stem cell, erythrocyte, and leukocyte markers. Mature megakaryocytes, but not megakaryocyte progenitors, specifically bound fibrinogen by way of αIIbβ3 in response to platelet agonists. Retrovirus-mediated expression of the reporter gene, green fluorescent protein, in ES cell-derived megakaryocytes did not affect viability or αIIbβ3 function. On the other hand, retroviral expression of CalDAG-GEFI, a Rap1 exchange factor identified by megakaryocyte gene profiling as a candidate integrin regulator, enhanced agonist-induced activation of Rap1b and fibrinogen binding to αIIbβ3 (P &lt; 0.01). These results establish that ES cells are a ready source of mature megakaryocytes for integrin studies and other biological applications, and they implicate CalDAG-GEFI in inside-out signaling to αIIbβ3.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12239348</pmid><doi>10.1073/pnas.202380099</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2002-10, Vol.99 (20), p.12819-12824
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_12239348
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
B lymphocytes
Biological Sciences
Bone marrow cells
Cell Differentiation
Cell Division
Cells
Cells, Cultured
Cellular differentiation
Feeder cells
Fibrinogen - metabolism
Flow Cytometry
Green Fluorescent Proteins
Guanine Nucleotide Exchange Factors - metabolism
Guanine Nucleotide Exchange Factors - physiology
Humans
Integrins - metabolism
Luminescent Proteins - metabolism
Megakaryocytes
Megakaryocytes - cytology
Megakaryocytes - metabolism
Mice
Multipotent stem cells
Peptides - chemistry
Platelet Glycoprotein GPIIb-IIIa Complex - metabolism
Platelets
rap1 GTP-Binding Proteins - metabolism
Retroviridae - genetics
Signal Transduction
Stem cells
Stem Cells - cytology
Stromal cells
Time Factors
title Megakaryocytes Derived from Embryonic Stem Cells Implicate CalDAG-GEFI in Integrin Signaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Megakaryocytes%20Derived%20from%20Embryonic%20Stem%20Cells%20Implicate%20CalDAG-GEFI%20in%20Integrin%20Signaling&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Eto,%20Koji&rft.date=2002-10-01&rft.volume=99&rft.issue=20&rft.spage=12819&rft.epage=12824&rft.pages=12819-12824&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.202380099&rft_dat=%3Cjstor_pubme%3E3073306%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72146513&rft_id=info:pmid/12239348&rft_jstor_id=3073306&rfr_iscdi=true