Electrospray Ionization Mass Spectrometry Analysis of Changes in Phospholipids in RBL-2H3 Mastocytoma Cells during Degranulation

Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2001-06, Vol.98 (13), p.7152-7157
Hauptverfasser: Ivanova, Pavlina T., Cerda, Blas A., Horn, David M., Cohen, Jared S., McLafferty, Fred W., Brown, H. Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7157
container_issue 13
container_start_page 7152
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 98
creator Ivanova, Pavlina T.
Cerda, Blas A.
Horn, David M.
Cohen, Jared S.
McLafferty, Fred W.
Brown, H. Alex
description Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which lipids participate. Phospholipase-catalyzed hydrolysis of phospholipids often follows cell surface receptor activation. Recently, we demonstrated that granule fusion is initiated by addition of exogenous, nonmammalian phospholipases to permeabilized mast cells. To pursue this finding, we use positive and negative mode Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to measure changes in the glycerophospholipid composition of total lipid extracts of intact and permeabilized RBL-2H3 (mucosal mast cell line) cells. The low energy of the electrospray ionization results in efficient production of molecular ions of phospholipids uncomplicated by further fragmentation, and changes were observed that eluded conventional detection methods. From these analyses we have spectrally resolved more than 130 glycerophospholipids and determined changes initiated by introduction of exogenous phospholipase C, phospholipase D, or phospholipase A2. These exogenous phospholipases have a preference for phosphatidylcholine with long polyunsaturated alkyl chains as substrates and, when added to permeabilized mast cells, produce multiple species of mono- and polyunsaturated diacylglycerols, phosphatidic acids, and lysophosphatidylcholines, respectively. The patterns of changes of these lipids provide an extraordinarily rich source of data for evaluating the effects of specific lipid species generated during cellular processes, such as exocytosis.
doi_str_mv 10.1073/pnas.131195098
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11416200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3055958</jstor_id><sourcerecordid>3055958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-758d663afbf6b3717ff29fc8f2dd6b0b209effbcf83ee798717863cebb5b87f43</originalsourceid><addsrcrecordid>eNptkkuP0zAUhSMEYsrAlhVCFgtYpfiRxLY0m6EMzEhFIB5ry0ns1lViB9tBhBU_HactZUCsLPl-59zre5xljxFcIkjJy8HKsEQEIV5Czu5kCwQ5yquCw7vZAkJMc1bg4ix7EMIOQshLBu9nZwgVqMIQLrKfV51qondh8HICN86aHzIaZ8E7GQL4NOyLvYp-ApdWdlMwATgNVltpNyoAY8GHbRJvXWcG0-4vPr5a5_iazA7RNVN0vQQr1XUBtKM3dgNeq42Xduz2jR5m97Tsgnp0PM-zL2-uPq-u8_X7tzery3XeFIzGnJasrSoida2rmlBEtcZcN0zjtq1qWGPIldZ1oxlRinKWCFaRRtV1WTOqC3KeXRx8h7HuVdsoG73sxOBNL_0knDTi74o1W7Fx3wQpKsKS_PlR7t3XUYUoehOa9CpplRuDoJBXuCznPs_-AXdu9Gl1QWCICogQIQlaHqAmbT54pU9zICjmXMWcqzjlmgRPb0__Bz8GmYAXR2AW_i5zljwERSUWeuy6qL7HW1b_JxPw5ADsUn7-RBBYlun7kF-6isNs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201401133</pqid></control><display><type>article</type><title>Electrospray Ionization Mass Spectrometry Analysis of Changes in Phospholipids in RBL-2H3 Mastocytoma Cells during Degranulation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ivanova, Pavlina T. ; Cerda, Blas A. ; Horn, David M. ; Cohen, Jared S. ; McLafferty, Fred W. ; Brown, H. Alex</creator><creatorcontrib>Ivanova, Pavlina T. ; Cerda, Blas A. ; Horn, David M. ; Cohen, Jared S. ; McLafferty, Fred W. ; Brown, H. Alex</creatorcontrib><description>Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which lipids participate. Phospholipase-catalyzed hydrolysis of phospholipids often follows cell surface receptor activation. Recently, we demonstrated that granule fusion is initiated by addition of exogenous, nonmammalian phospholipases to permeabilized mast cells. To pursue this finding, we use positive and negative mode Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to measure changes in the glycerophospholipid composition of total lipid extracts of intact and permeabilized RBL-2H3 (mucosal mast cell line) cells. The low energy of the electrospray ionization results in efficient production of molecular ions of phospholipids uncomplicated by further fragmentation, and changes were observed that eluded conventional detection methods. From these analyses we have spectrally resolved more than 130 glycerophospholipids and determined changes initiated by introduction of exogenous phospholipase C, phospholipase D, or phospholipase A2. These exogenous phospholipases have a preference for phosphatidylcholine with long polyunsaturated alkyl chains as substrates and, when added to permeabilized mast cells, produce multiple species of mono- and polyunsaturated diacylglycerols, phosphatidic acids, and lysophosphatidylcholines, respectively. The patterns of changes of these lipids provide an extraordinarily rich source of data for evaluating the effects of specific lipid species generated during cellular processes, such as exocytosis.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.131195098</identifier><identifier>PMID: 11416200</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biochemistry ; Biological Sciences ; Cell Degranulation - physiology ; Cell lines ; Cell Membrane Permeability ; Cell membranes ; Cells ; Chemical composition ; Fatty acids ; Fourier Analysis ; Ionization ; Ions ; Lipids ; Mass Spectrometry - methods ; Mass spectroscopy ; Mast cells ; Mast-Cell Sarcoma - physiopathology ; Phosphatidylcholines - metabolism ; Phospholipase D - metabolism ; Phospholipases A - metabolism ; Phospholipases A2 ; Phospholipids ; Phospholipids - chemistry ; Phospholipids - metabolism ; Rats ; Scientific imaging ; Spectrometry, Mass, Electrospray Ionization - methods ; Substrate Specificity ; Tumor Cells, Cultured ; Type C Phospholipases - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-06, Vol.98 (13), p.7152-7157</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 19, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-758d663afbf6b3717ff29fc8f2dd6b0b209effbcf83ee798717863cebb5b87f43</citedby><cites>FETCH-LOGICAL-c487t-758d663afbf6b3717ff29fc8f2dd6b0b209effbcf83ee798717863cebb5b87f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3055958$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3055958$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11416200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivanova, Pavlina T.</creatorcontrib><creatorcontrib>Cerda, Blas A.</creatorcontrib><creatorcontrib>Horn, David M.</creatorcontrib><creatorcontrib>Cohen, Jared S.</creatorcontrib><creatorcontrib>McLafferty, Fred W.</creatorcontrib><creatorcontrib>Brown, H. Alex</creatorcontrib><title>Electrospray Ionization Mass Spectrometry Analysis of Changes in Phospholipids in RBL-2H3 Mastocytoma Cells during Degranulation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which lipids participate. Phospholipase-catalyzed hydrolysis of phospholipids often follows cell surface receptor activation. Recently, we demonstrated that granule fusion is initiated by addition of exogenous, nonmammalian phospholipases to permeabilized mast cells. To pursue this finding, we use positive and negative mode Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to measure changes in the glycerophospholipid composition of total lipid extracts of intact and permeabilized RBL-2H3 (mucosal mast cell line) cells. The low energy of the electrospray ionization results in efficient production of molecular ions of phospholipids uncomplicated by further fragmentation, and changes were observed that eluded conventional detection methods. From these analyses we have spectrally resolved more than 130 glycerophospholipids and determined changes initiated by introduction of exogenous phospholipase C, phospholipase D, or phospholipase A2. These exogenous phospholipases have a preference for phosphatidylcholine with long polyunsaturated alkyl chains as substrates and, when added to permeabilized mast cells, produce multiple species of mono- and polyunsaturated diacylglycerols, phosphatidic acids, and lysophosphatidylcholines, respectively. The patterns of changes of these lipids provide an extraordinarily rich source of data for evaluating the effects of specific lipid species generated during cellular processes, such as exocytosis.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell Degranulation - physiology</subject><subject>Cell lines</subject><subject>Cell Membrane Permeability</subject><subject>Cell membranes</subject><subject>Cells</subject><subject>Chemical composition</subject><subject>Fatty acids</subject><subject>Fourier Analysis</subject><subject>Ionization</subject><subject>Ions</subject><subject>Lipids</subject><subject>Mass Spectrometry - methods</subject><subject>Mass spectroscopy</subject><subject>Mast cells</subject><subject>Mast-Cell Sarcoma - physiopathology</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phospholipase D - metabolism</subject><subject>Phospholipases A - metabolism</subject><subject>Phospholipases A2</subject><subject>Phospholipids</subject><subject>Phospholipids - chemistry</subject><subject>Phospholipids - metabolism</subject><subject>Rats</subject><subject>Scientific imaging</subject><subject>Spectrometry, Mass, Electrospray Ionization - methods</subject><subject>Substrate Specificity</subject><subject>Tumor Cells, Cultured</subject><subject>Type C Phospholipases - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkkuP0zAUhSMEYsrAlhVCFgtYpfiRxLY0m6EMzEhFIB5ry0ns1lViB9tBhBU_HactZUCsLPl-59zre5xljxFcIkjJy8HKsEQEIV5Czu5kCwQ5yquCw7vZAkJMc1bg4ix7EMIOQshLBu9nZwgVqMIQLrKfV51qondh8HICN86aHzIaZ8E7GQL4NOyLvYp-ApdWdlMwATgNVltpNyoAY8GHbRJvXWcG0-4vPr5a5_iazA7RNVN0vQQr1XUBtKM3dgNeq42Xduz2jR5m97Tsgnp0PM-zL2-uPq-u8_X7tzery3XeFIzGnJasrSoida2rmlBEtcZcN0zjtq1qWGPIldZ1oxlRinKWCFaRRtV1WTOqC3KeXRx8h7HuVdsoG73sxOBNL_0knDTi74o1W7Fx3wQpKsKS_PlR7t3XUYUoehOa9CpplRuDoJBXuCznPs_-AXdu9Gl1QWCICogQIQlaHqAmbT54pU9zICjmXMWcqzjlmgRPb0__Bz8GmYAXR2AW_i5zljwERSUWeuy6qL7HW1b_JxPw5ADsUn7-RBBYlun7kF-6isNs</recordid><startdate>20010619</startdate><enddate>20010619</enddate><creator>Ivanova, Pavlina T.</creator><creator>Cerda, Blas A.</creator><creator>Horn, David M.</creator><creator>Cohen, Jared S.</creator><creator>McLafferty, Fred W.</creator><creator>Brown, H. Alex</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010619</creationdate><title>Electrospray Ionization Mass Spectrometry Analysis of Changes in Phospholipids in RBL-2H3 Mastocytoma Cells during Degranulation</title><author>Ivanova, Pavlina T. ; Cerda, Blas A. ; Horn, David M. ; Cohen, Jared S. ; McLafferty, Fred W. ; Brown, H. Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-758d663afbf6b3717ff29fc8f2dd6b0b209effbcf83ee798717863cebb5b87f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell Degranulation - physiology</topic><topic>Cell lines</topic><topic>Cell Membrane Permeability</topic><topic>Cell membranes</topic><topic>Cells</topic><topic>Chemical composition</topic><topic>Fatty acids</topic><topic>Fourier Analysis</topic><topic>Ionization</topic><topic>Ions</topic><topic>Lipids</topic><topic>Mass Spectrometry - methods</topic><topic>Mass spectroscopy</topic><topic>Mast cells</topic><topic>Mast-Cell Sarcoma - physiopathology</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phospholipase D - metabolism</topic><topic>Phospholipases A - metabolism</topic><topic>Phospholipases A2</topic><topic>Phospholipids</topic><topic>Phospholipids - chemistry</topic><topic>Phospholipids - metabolism</topic><topic>Rats</topic><topic>Scientific imaging</topic><topic>Spectrometry, Mass, Electrospray Ionization - methods</topic><topic>Substrate Specificity</topic><topic>Tumor Cells, Cultured</topic><topic>Type C Phospholipases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanova, Pavlina T.</creatorcontrib><creatorcontrib>Cerda, Blas A.</creatorcontrib><creatorcontrib>Horn, David M.</creatorcontrib><creatorcontrib>Cohen, Jared S.</creatorcontrib><creatorcontrib>McLafferty, Fred W.</creatorcontrib><creatorcontrib>Brown, H. Alex</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanova, Pavlina T.</au><au>Cerda, Blas A.</au><au>Horn, David M.</au><au>Cohen, Jared S.</au><au>McLafferty, Fred W.</au><au>Brown, H. Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospray Ionization Mass Spectrometry Analysis of Changes in Phospholipids in RBL-2H3 Mastocytoma Cells during Degranulation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-06-19</date><risdate>2001</risdate><volume>98</volume><issue>13</issue><spage>7152</spage><epage>7157</epage><pages>7152-7157</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Biological membranes contain an extraordinary diversity of lipids. Phospholipids function as major structural elements of cellular membranes, and analysis of changes in the highly heterogeneous mixtures of lipids found in eukaryotic cells is central to understanding the complex functions in which lipids participate. Phospholipase-catalyzed hydrolysis of phospholipids often follows cell surface receptor activation. Recently, we demonstrated that granule fusion is initiated by addition of exogenous, nonmammalian phospholipases to permeabilized mast cells. To pursue this finding, we use positive and negative mode Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) to measure changes in the glycerophospholipid composition of total lipid extracts of intact and permeabilized RBL-2H3 (mucosal mast cell line) cells. The low energy of the electrospray ionization results in efficient production of molecular ions of phospholipids uncomplicated by further fragmentation, and changes were observed that eluded conventional detection methods. From these analyses we have spectrally resolved more than 130 glycerophospholipids and determined changes initiated by introduction of exogenous phospholipase C, phospholipase D, or phospholipase A2. These exogenous phospholipases have a preference for phosphatidylcholine with long polyunsaturated alkyl chains as substrates and, when added to permeabilized mast cells, produce multiple species of mono- and polyunsaturated diacylglycerols, phosphatidic acids, and lysophosphatidylcholines, respectively. The patterns of changes of these lipids provide an extraordinarily rich source of data for evaluating the effects of specific lipid species generated during cellular processes, such as exocytosis.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11416200</pmid><doi>10.1073/pnas.131195098</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2001-06, Vol.98 (13), p.7152-7157
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_11416200
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biochemistry
Biological Sciences
Cell Degranulation - physiology
Cell lines
Cell Membrane Permeability
Cell membranes
Cells
Chemical composition
Fatty acids
Fourier Analysis
Ionization
Ions
Lipids
Mass Spectrometry - methods
Mass spectroscopy
Mast cells
Mast-Cell Sarcoma - physiopathology
Phosphatidylcholines - metabolism
Phospholipase D - metabolism
Phospholipases A - metabolism
Phospholipases A2
Phospholipids
Phospholipids - chemistry
Phospholipids - metabolism
Rats
Scientific imaging
Spectrometry, Mass, Electrospray Ionization - methods
Substrate Specificity
Tumor Cells, Cultured
Type C Phospholipases - metabolism
title Electrospray Ionization Mass Spectrometry Analysis of Changes in Phospholipids in RBL-2H3 Mastocytoma Cells during Degranulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospray%20Ionization%20Mass%20Spectrometry%20Analysis%20of%20Changes%20in%20Phospholipids%20in%20RBL-2H3%20Mastocytoma%20Cells%20during%20Degranulation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ivanova,%20Pavlina%20T.&rft.date=2001-06-19&rft.volume=98&rft.issue=13&rft.spage=7152&rft.epage=7157&rft.pages=7152-7157&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.131195098&rft_dat=%3Cjstor_pubme%3E3055958%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201401133&rft_id=info:pmid/11416200&rft_jstor_id=3055958&rfr_iscdi=true