Tissue-Specific Overexpression of Lipoprotein Lipase Causes Tissue-Specific Insulin Resistance
Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2001-06, Vol.98 (13), p.7522-7527 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7527 |
---|---|
container_issue | 13 |
container_start_page | 7522 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 98 |
creator | Kim, Jason K. Fillmore, Jonathan J. Chen, Yan Yu, Chunli Moore, Irene K. Pypaert, Marc Lutz, E. Peer Kako, Yuko Velez-Carrasco, Wanda Goldberg, Ira J. Breslow, Jan L. Shulman, Gerald I. |
description | Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic-euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle-lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver-lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones. |
doi_str_mv | 10.1073/pnas.121164498 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11390966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3056021</jstor_id><sourcerecordid>3056021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-54f5c55b85ada63c80d618df846919a04ad1b9d13baf342009f74676a2102ff93</originalsourceid><addsrcrecordid>eNp90U2LFDEQBuAgijuuXj2JNB701GNVkk53YC8y-LEwsKDr1ZDpTjRDT6dNdS_rvzfDjOO6B08pqOcNVRRjzxGWCLV4Ow6WlsgRlZS6ecAWCBpLJTU8ZAsAXpeN5PKMPSHaAoCuGnjMzhCFBq3Ugn27DkSzK7-Mrg0-tMXVjUvudkyOKMShiL5YhzGOKU4uDPvakitWdiZHxf3s5UBzn9VnR4EmO7TuKXvkbU_u2fE9Z18_vL9efSrXVx8vV-_WZVtVYior6atcbZrKdlaJtoFOYdP5RiqN2oK0HW50h2JjvZA87-FrqWplOQL3XotzdnH4d5w3O9e1bpiS7c2Yws6mXybaYP7tDOGH-R5vjJA1YI6_PsZT_Dk7mswuUOv63g4uzmRq0BIkqAxf3YPbOKchr2Y4oATeyDqj5QG1KRIl509zIJj91cz-auZ0tRx4eXf6v_x4pjtgH_zT1o1BYeqK8wze_BcYP_f95G6nLF8c5JammE5UQKWAo_gNCIG2Aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201402847</pqid></control><display><type>article</type><title>Tissue-Specific Overexpression of Lipoprotein Lipase Causes Tissue-Specific Insulin Resistance</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Jason K. ; Fillmore, Jonathan J. ; Chen, Yan ; Yu, Chunli ; Moore, Irene K. ; Pypaert, Marc ; Lutz, E. Peer ; Kako, Yuko ; Velez-Carrasco, Wanda ; Goldberg, Ira J. ; Breslow, Jan L. ; Shulman, Gerald I.</creator><creatorcontrib>Kim, Jason K. ; Fillmore, Jonathan J. ; Chen, Yan ; Yu, Chunli ; Moore, Irene K. ; Pypaert, Marc ; Lutz, E. Peer ; Kako, Yuko ; Velez-Carrasco, Wanda ; Goldberg, Ira J. ; Breslow, Jan L. ; Shulman, Gerald I.</creatorcontrib><description>Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic-euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle-lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver-lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.121164498</identifier><identifier>PMID: 11390966</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Blood Glucose - drug effects ; Blood Glucose - metabolism ; Drug resistance ; Fatty Acids, Nonesterified - blood ; Glucagon - blood ; Glucose - metabolism ; Glucose Clamp Technique ; Glucose Tolerance Test ; Glycogen ; Heterozygote ; Insulin ; Insulin - pharmacology ; Insulin - physiology ; Insulin Receptor Substrate Proteins ; Insulin resistance ; Insulin Resistance - genetics ; Insulin Resistance - physiology ; Leptin - blood ; Lipid metabolism ; Lipoprotein Lipase - genetics ; Lipoprotein Lipase - metabolism ; Liver ; Liver - metabolism ; Memory interference ; Mice ; Mice, Knockout ; Mice, Transgenic ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - ultrastructure ; Muscles ; Muscular system ; Organ Specificity ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphoproteins - metabolism ; Proteins ; Receptors ; Signal Transduction ; Skeletal muscle ; Tissues ; Triglycerides ; Triglycerides - blood</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-06, Vol.98 (13), p.7522-7527</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 19, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-54f5c55b85ada63c80d618df846919a04ad1b9d13baf342009f74676a2102ff93</citedby><cites>FETCH-LOGICAL-c553t-54f5c55b85ada63c80d618df846919a04ad1b9d13baf342009f74676a2102ff93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3056021$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3056021$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11390966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jason K.</creatorcontrib><creatorcontrib>Fillmore, Jonathan J.</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Yu, Chunli</creatorcontrib><creatorcontrib>Moore, Irene K.</creatorcontrib><creatorcontrib>Pypaert, Marc</creatorcontrib><creatorcontrib>Lutz, E. Peer</creatorcontrib><creatorcontrib>Kako, Yuko</creatorcontrib><creatorcontrib>Velez-Carrasco, Wanda</creatorcontrib><creatorcontrib>Goldberg, Ira J.</creatorcontrib><creatorcontrib>Breslow, Jan L.</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><title>Tissue-Specific Overexpression of Lipoprotein Lipase Causes Tissue-Specific Insulin Resistance</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic-euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle-lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver-lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Blood Glucose - drug effects</subject><subject>Blood Glucose - metabolism</subject><subject>Drug resistance</subject><subject>Fatty Acids, Nonesterified - blood</subject><subject>Glucagon - blood</subject><subject>Glucose - metabolism</subject><subject>Glucose Clamp Technique</subject><subject>Glucose Tolerance Test</subject><subject>Glycogen</subject><subject>Heterozygote</subject><subject>Insulin</subject><subject>Insulin - pharmacology</subject><subject>Insulin - physiology</subject><subject>Insulin Receptor Substrate Proteins</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - genetics</subject><subject>Insulin Resistance - physiology</subject><subject>Leptin - blood</subject><subject>Lipid metabolism</subject><subject>Lipoprotein Lipase - genetics</subject><subject>Lipoprotein Lipase - metabolism</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Memory interference</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - ultrastructure</subject><subject>Muscles</subject><subject>Muscular system</subject><subject>Organ Specificity</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphoproteins - metabolism</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Signal Transduction</subject><subject>Skeletal muscle</subject><subject>Tissues</subject><subject>Triglycerides</subject><subject>Triglycerides - blood</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U2LFDEQBuAgijuuXj2JNB701GNVkk53YC8y-LEwsKDr1ZDpTjRDT6dNdS_rvzfDjOO6B08pqOcNVRRjzxGWCLV4Ow6WlsgRlZS6ecAWCBpLJTU8ZAsAXpeN5PKMPSHaAoCuGnjMzhCFBq3Ugn27DkSzK7-Mrg0-tMXVjUvudkyOKMShiL5YhzGOKU4uDPvakitWdiZHxf3s5UBzn9VnR4EmO7TuKXvkbU_u2fE9Z18_vL9efSrXVx8vV-_WZVtVYior6atcbZrKdlaJtoFOYdP5RiqN2oK0HW50h2JjvZA87-FrqWplOQL3XotzdnH4d5w3O9e1bpiS7c2Yws6mXybaYP7tDOGH-R5vjJA1YI6_PsZT_Dk7mswuUOv63g4uzmRq0BIkqAxf3YPbOKchr2Y4oATeyDqj5QG1KRIl509zIJj91cz-auZ0tRx4eXf6v_x4pjtgH_zT1o1BYeqK8wze_BcYP_f95G6nLF8c5JammE5UQKWAo_gNCIG2Aw</recordid><startdate>20010619</startdate><enddate>20010619</enddate><creator>Kim, Jason K.</creator><creator>Fillmore, Jonathan J.</creator><creator>Chen, Yan</creator><creator>Yu, Chunli</creator><creator>Moore, Irene K.</creator><creator>Pypaert, Marc</creator><creator>Lutz, E. Peer</creator><creator>Kako, Yuko</creator><creator>Velez-Carrasco, Wanda</creator><creator>Goldberg, Ira J.</creator><creator>Breslow, Jan L.</creator><creator>Shulman, Gerald I.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010619</creationdate><title>Tissue-Specific Overexpression of Lipoprotein Lipase Causes Tissue-Specific Insulin Resistance</title><author>Kim, Jason K. ; Fillmore, Jonathan J. ; Chen, Yan ; Yu, Chunli ; Moore, Irene K. ; Pypaert, Marc ; Lutz, E. Peer ; Kako, Yuko ; Velez-Carrasco, Wanda ; Goldberg, Ira J. ; Breslow, Jan L. ; Shulman, Gerald I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-54f5c55b85ada63c80d618df846919a04ad1b9d13baf342009f74676a2102ff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Blood Glucose - drug effects</topic><topic>Blood Glucose - metabolism</topic><topic>Drug resistance</topic><topic>Fatty Acids, Nonesterified - blood</topic><topic>Glucagon - blood</topic><topic>Glucose - metabolism</topic><topic>Glucose Clamp Technique</topic><topic>Glucose Tolerance Test</topic><topic>Glycogen</topic><topic>Heterozygote</topic><topic>Insulin</topic><topic>Insulin - pharmacology</topic><topic>Insulin - physiology</topic><topic>Insulin Receptor Substrate Proteins</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - genetics</topic><topic>Insulin Resistance - physiology</topic><topic>Leptin - blood</topic><topic>Lipid metabolism</topic><topic>Lipoprotein Lipase - genetics</topic><topic>Lipoprotein Lipase - metabolism</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Memory interference</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - ultrastructure</topic><topic>Muscles</topic><topic>Muscular system</topic><topic>Organ Specificity</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphoproteins - metabolism</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Signal Transduction</topic><topic>Skeletal muscle</topic><topic>Tissues</topic><topic>Triglycerides</topic><topic>Triglycerides - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jason K.</creatorcontrib><creatorcontrib>Fillmore, Jonathan J.</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Yu, Chunli</creatorcontrib><creatorcontrib>Moore, Irene K.</creatorcontrib><creatorcontrib>Pypaert, Marc</creatorcontrib><creatorcontrib>Lutz, E. Peer</creatorcontrib><creatorcontrib>Kako, Yuko</creatorcontrib><creatorcontrib>Velez-Carrasco, Wanda</creatorcontrib><creatorcontrib>Goldberg, Ira J.</creatorcontrib><creatorcontrib>Breslow, Jan L.</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jason K.</au><au>Fillmore, Jonathan J.</au><au>Chen, Yan</au><au>Yu, Chunli</au><au>Moore, Irene K.</au><au>Pypaert, Marc</au><au>Lutz, E. Peer</au><au>Kako, Yuko</au><au>Velez-Carrasco, Wanda</au><au>Goldberg, Ira J.</au><au>Breslow, Jan L.</au><au>Shulman, Gerald I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tissue-Specific Overexpression of Lipoprotein Lipase Causes Tissue-Specific Insulin Resistance</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-06-19</date><risdate>2001</risdate><volume>98</volume><issue>13</issue><spage>7522</spage><epage>7527</epage><pages>7522-7527</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic-euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle-lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver-lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11390966</pmid><doi>10.1073/pnas.121164498</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2001-06, Vol.98 (13), p.7522-7527 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_11390966 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Biological Sciences Blood Glucose - drug effects Blood Glucose - metabolism Drug resistance Fatty Acids, Nonesterified - blood Glucagon - blood Glucose - metabolism Glucose Clamp Technique Glucose Tolerance Test Glycogen Heterozygote Insulin Insulin - pharmacology Insulin - physiology Insulin Receptor Substrate Proteins Insulin resistance Insulin Resistance - genetics Insulin Resistance - physiology Leptin - blood Lipid metabolism Lipoprotein Lipase - genetics Lipoprotein Lipase - metabolism Liver Liver - metabolism Memory interference Mice Mice, Knockout Mice, Transgenic Muscle, Skeletal - metabolism Muscle, Skeletal - ultrastructure Muscles Muscular system Organ Specificity Phosphatidylinositol 3-Kinases - metabolism Phosphoproteins - metabolism Proteins Receptors Signal Transduction Skeletal muscle Tissues Triglycerides Triglycerides - blood |
title | Tissue-Specific Overexpression of Lipoprotein Lipase Causes Tissue-Specific Insulin Resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tissue-Specific%20Overexpression%20of%20Lipoprotein%20Lipase%20Causes%20Tissue-Specific%20Insulin%20Resistance&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kim,%20Jason%20K.&rft.date=2001-06-19&rft.volume=98&rft.issue=13&rft.spage=7522&rft.epage=7527&rft.pages=7522-7527&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.121164498&rft_dat=%3Cjstor_pubme%3E3056021%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201402847&rft_id=info:pmid/11390966&rft_jstor_id=3056021&rfr_iscdi=true |