Tissue-Specific Overexpression of Lipoprotein Lipase Causes Tissue-Specific Insulin Resistance

Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2001-06, Vol.98 (13), p.7522-7527
Hauptverfasser: Kim, Jason K., Fillmore, Jonathan J., Chen, Yan, Yu, Chunli, Moore, Irene K., Pypaert, Marc, Lutz, E. Peer, Kako, Yuko, Velez-Carrasco, Wanda, Goldberg, Ira J., Breslow, Jan L., Shulman, Gerald I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7527
container_issue 13
container_start_page 7522
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 98
creator Kim, Jason K.
Fillmore, Jonathan J.
Chen, Yan
Yu, Chunli
Moore, Irene K.
Pypaert, Marc
Lutz, E. Peer
Kako, Yuko
Velez-Carrasco, Wanda
Goldberg, Ira J.
Breslow, Jan L.
Shulman, Gerald I.
description Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic-euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle-lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver-lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.
doi_str_mv 10.1073/pnas.121164498
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11390966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3056021</jstor_id><sourcerecordid>3056021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-54f5c55b85ada63c80d618df846919a04ad1b9d13baf342009f74676a2102ff93</originalsourceid><addsrcrecordid>eNp90U2LFDEQBuAgijuuXj2JNB701GNVkk53YC8y-LEwsKDr1ZDpTjRDT6dNdS_rvzfDjOO6B08pqOcNVRRjzxGWCLV4Ow6WlsgRlZS6ecAWCBpLJTU8ZAsAXpeN5PKMPSHaAoCuGnjMzhCFBq3Ugn27DkSzK7-Mrg0-tMXVjUvudkyOKMShiL5YhzGOKU4uDPvakitWdiZHxf3s5UBzn9VnR4EmO7TuKXvkbU_u2fE9Z18_vL9efSrXVx8vV-_WZVtVYior6atcbZrKdlaJtoFOYdP5RiqN2oK0HW50h2JjvZA87-FrqWplOQL3XotzdnH4d5w3O9e1bpiS7c2Yws6mXybaYP7tDOGH-R5vjJA1YI6_PsZT_Dk7mswuUOv63g4uzmRq0BIkqAxf3YPbOKchr2Y4oATeyDqj5QG1KRIl509zIJj91cz-auZ0tRx4eXf6v_x4pjtgH_zT1o1BYeqK8wze_BcYP_f95G6nLF8c5JammE5UQKWAo_gNCIG2Aw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201402847</pqid></control><display><type>article</type><title>Tissue-Specific Overexpression of Lipoprotein Lipase Causes Tissue-Specific Insulin Resistance</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kim, Jason K. ; Fillmore, Jonathan J. ; Chen, Yan ; Yu, Chunli ; Moore, Irene K. ; Pypaert, Marc ; Lutz, E. Peer ; Kako, Yuko ; Velez-Carrasco, Wanda ; Goldberg, Ira J. ; Breslow, Jan L. ; Shulman, Gerald I.</creator><creatorcontrib>Kim, Jason K. ; Fillmore, Jonathan J. ; Chen, Yan ; Yu, Chunli ; Moore, Irene K. ; Pypaert, Marc ; Lutz, E. Peer ; Kako, Yuko ; Velez-Carrasco, Wanda ; Goldberg, Ira J. ; Breslow, Jan L. ; Shulman, Gerald I.</creatorcontrib><description>Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic-euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle-lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver-lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.121164498</identifier><identifier>PMID: 11390966</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Biological Sciences ; Blood Glucose - drug effects ; Blood Glucose - metabolism ; Drug resistance ; Fatty Acids, Nonesterified - blood ; Glucagon - blood ; Glucose - metabolism ; Glucose Clamp Technique ; Glucose Tolerance Test ; Glycogen ; Heterozygote ; Insulin ; Insulin - pharmacology ; Insulin - physiology ; Insulin Receptor Substrate Proteins ; Insulin resistance ; Insulin Resistance - genetics ; Insulin Resistance - physiology ; Leptin - blood ; Lipid metabolism ; Lipoprotein Lipase - genetics ; Lipoprotein Lipase - metabolism ; Liver ; Liver - metabolism ; Memory interference ; Mice ; Mice, Knockout ; Mice, Transgenic ; Muscle, Skeletal - metabolism ; Muscle, Skeletal - ultrastructure ; Muscles ; Muscular system ; Organ Specificity ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphoproteins - metabolism ; Proteins ; Receptors ; Signal Transduction ; Skeletal muscle ; Tissues ; Triglycerides ; Triglycerides - blood</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-06, Vol.98 (13), p.7522-7527</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 19, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-54f5c55b85ada63c80d618df846919a04ad1b9d13baf342009f74676a2102ff93</citedby><cites>FETCH-LOGICAL-c553t-54f5c55b85ada63c80d618df846919a04ad1b9d13baf342009f74676a2102ff93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3056021$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3056021$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11390966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Jason K.</creatorcontrib><creatorcontrib>Fillmore, Jonathan J.</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Yu, Chunli</creatorcontrib><creatorcontrib>Moore, Irene K.</creatorcontrib><creatorcontrib>Pypaert, Marc</creatorcontrib><creatorcontrib>Lutz, E. Peer</creatorcontrib><creatorcontrib>Kako, Yuko</creatorcontrib><creatorcontrib>Velez-Carrasco, Wanda</creatorcontrib><creatorcontrib>Goldberg, Ira J.</creatorcontrib><creatorcontrib>Breslow, Jan L.</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><title>Tissue-Specific Overexpression of Lipoprotein Lipase Causes Tissue-Specific Insulin Resistance</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic-euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle-lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver-lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.</description><subject>Animals</subject><subject>Biological Sciences</subject><subject>Blood Glucose - drug effects</subject><subject>Blood Glucose - metabolism</subject><subject>Drug resistance</subject><subject>Fatty Acids, Nonesterified - blood</subject><subject>Glucagon - blood</subject><subject>Glucose - metabolism</subject><subject>Glucose Clamp Technique</subject><subject>Glucose Tolerance Test</subject><subject>Glycogen</subject><subject>Heterozygote</subject><subject>Insulin</subject><subject>Insulin - pharmacology</subject><subject>Insulin - physiology</subject><subject>Insulin Receptor Substrate Proteins</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - genetics</subject><subject>Insulin Resistance - physiology</subject><subject>Leptin - blood</subject><subject>Lipid metabolism</subject><subject>Lipoprotein Lipase - genetics</subject><subject>Lipoprotein Lipase - metabolism</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Memory interference</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Skeletal - ultrastructure</subject><subject>Muscles</subject><subject>Muscular system</subject><subject>Organ Specificity</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphoproteins - metabolism</subject><subject>Proteins</subject><subject>Receptors</subject><subject>Signal Transduction</subject><subject>Skeletal muscle</subject><subject>Tissues</subject><subject>Triglycerides</subject><subject>Triglycerides - blood</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U2LFDEQBuAgijuuXj2JNB701GNVkk53YC8y-LEwsKDr1ZDpTjRDT6dNdS_rvzfDjOO6B08pqOcNVRRjzxGWCLV4Ow6WlsgRlZS6ecAWCBpLJTU8ZAsAXpeN5PKMPSHaAoCuGnjMzhCFBq3Ugn27DkSzK7-Mrg0-tMXVjUvudkyOKMShiL5YhzGOKU4uDPvakitWdiZHxf3s5UBzn9VnR4EmO7TuKXvkbU_u2fE9Z18_vL9efSrXVx8vV-_WZVtVYior6atcbZrKdlaJtoFOYdP5RiqN2oK0HW50h2JjvZA87-FrqWplOQL3XotzdnH4d5w3O9e1bpiS7c2Yws6mXybaYP7tDOGH-R5vjJA1YI6_PsZT_Dk7mswuUOv63g4uzmRq0BIkqAxf3YPbOKchr2Y4oATeyDqj5QG1KRIl509zIJj91cz-auZ0tRx4eXf6v_x4pjtgH_zT1o1BYeqK8wze_BcYP_f95G6nLF8c5JammE5UQKWAo_gNCIG2Aw</recordid><startdate>20010619</startdate><enddate>20010619</enddate><creator>Kim, Jason K.</creator><creator>Fillmore, Jonathan J.</creator><creator>Chen, Yan</creator><creator>Yu, Chunli</creator><creator>Moore, Irene K.</creator><creator>Pypaert, Marc</creator><creator>Lutz, E. Peer</creator><creator>Kako, Yuko</creator><creator>Velez-Carrasco, Wanda</creator><creator>Goldberg, Ira J.</creator><creator>Breslow, Jan L.</creator><creator>Shulman, Gerald I.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010619</creationdate><title>Tissue-Specific Overexpression of Lipoprotein Lipase Causes Tissue-Specific Insulin Resistance</title><author>Kim, Jason K. ; Fillmore, Jonathan J. ; Chen, Yan ; Yu, Chunli ; Moore, Irene K. ; Pypaert, Marc ; Lutz, E. Peer ; Kako, Yuko ; Velez-Carrasco, Wanda ; Goldberg, Ira J. ; Breslow, Jan L. ; Shulman, Gerald I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-54f5c55b85ada63c80d618df846919a04ad1b9d13baf342009f74676a2102ff93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Biological Sciences</topic><topic>Blood Glucose - drug effects</topic><topic>Blood Glucose - metabolism</topic><topic>Drug resistance</topic><topic>Fatty Acids, Nonesterified - blood</topic><topic>Glucagon - blood</topic><topic>Glucose - metabolism</topic><topic>Glucose Clamp Technique</topic><topic>Glucose Tolerance Test</topic><topic>Glycogen</topic><topic>Heterozygote</topic><topic>Insulin</topic><topic>Insulin - pharmacology</topic><topic>Insulin - physiology</topic><topic>Insulin Receptor Substrate Proteins</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - genetics</topic><topic>Insulin Resistance - physiology</topic><topic>Leptin - blood</topic><topic>Lipid metabolism</topic><topic>Lipoprotein Lipase - genetics</topic><topic>Lipoprotein Lipase - metabolism</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Memory interference</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Skeletal - ultrastructure</topic><topic>Muscles</topic><topic>Muscular system</topic><topic>Organ Specificity</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphoproteins - metabolism</topic><topic>Proteins</topic><topic>Receptors</topic><topic>Signal Transduction</topic><topic>Skeletal muscle</topic><topic>Tissues</topic><topic>Triglycerides</topic><topic>Triglycerides - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Jason K.</creatorcontrib><creatorcontrib>Fillmore, Jonathan J.</creatorcontrib><creatorcontrib>Chen, Yan</creatorcontrib><creatorcontrib>Yu, Chunli</creatorcontrib><creatorcontrib>Moore, Irene K.</creatorcontrib><creatorcontrib>Pypaert, Marc</creatorcontrib><creatorcontrib>Lutz, E. Peer</creatorcontrib><creatorcontrib>Kako, Yuko</creatorcontrib><creatorcontrib>Velez-Carrasco, Wanda</creatorcontrib><creatorcontrib>Goldberg, Ira J.</creatorcontrib><creatorcontrib>Breslow, Jan L.</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Jason K.</au><au>Fillmore, Jonathan J.</au><au>Chen, Yan</au><au>Yu, Chunli</au><au>Moore, Irene K.</au><au>Pypaert, Marc</au><au>Lutz, E. Peer</au><au>Kako, Yuko</au><au>Velez-Carrasco, Wanda</au><au>Goldberg, Ira J.</au><au>Breslow, Jan L.</au><au>Shulman, Gerald I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tissue-Specific Overexpression of Lipoprotein Lipase Causes Tissue-Specific Insulin Resistance</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-06-19</date><risdate>2001</risdate><volume>98</volume><issue>13</issue><spage>7522</spage><epage>7527</epage><pages>7522-7527</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Insulin resistance in skeletal muscle and liver may play a primary role in the development of type 2 diabetes mellitus, and the mechanism by which insulin resistance occurs may be related to alterations in fat metabolism. Transgenic mice with muscle- and liver-specific overexpression of lipoprotein lipase were studied during a 2-h hyperinsulinemic-euglycemic clamp to determine the effect of tissue-specific increase in fat on insulin action and signaling. Muscle-lipoprotein lipase mice had a 3-fold increase in muscle triglyceride content and were insulin resistant because of decreases in insulin-stimulated glucose uptake in skeletal muscle and insulin activation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity. In contrast, liver-lipoprotein lipase mice had a 2-fold increase in liver triglyceride content and were insulin resistant because of impaired ability of insulin to suppress endogenous glucose production associated with defects in insulin activation of insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity. These defects in insulin action and signaling were associated with increases in intracellular fatty acid-derived metabolites (i.e., diacylglycerol, fatty acyl CoA, ceramides). Our findings suggest a direct and causative relationship between the accumulation of intracellular fatty acid-derived metabolites and insulin resistance mediated via alterations in the insulin signaling pathway, independent of circulating adipocyte-derived hormones.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11390966</pmid><doi>10.1073/pnas.121164498</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2001-06, Vol.98 (13), p.7522-7527
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_11390966
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Biological Sciences
Blood Glucose - drug effects
Blood Glucose - metabolism
Drug resistance
Fatty Acids, Nonesterified - blood
Glucagon - blood
Glucose - metabolism
Glucose Clamp Technique
Glucose Tolerance Test
Glycogen
Heterozygote
Insulin
Insulin - pharmacology
Insulin - physiology
Insulin Receptor Substrate Proteins
Insulin resistance
Insulin Resistance - genetics
Insulin Resistance - physiology
Leptin - blood
Lipid metabolism
Lipoprotein Lipase - genetics
Lipoprotein Lipase - metabolism
Liver
Liver - metabolism
Memory interference
Mice
Mice, Knockout
Mice, Transgenic
Muscle, Skeletal - metabolism
Muscle, Skeletal - ultrastructure
Muscles
Muscular system
Organ Specificity
Phosphatidylinositol 3-Kinases - metabolism
Phosphoproteins - metabolism
Proteins
Receptors
Signal Transduction
Skeletal muscle
Tissues
Triglycerides
Triglycerides - blood
title Tissue-Specific Overexpression of Lipoprotein Lipase Causes Tissue-Specific Insulin Resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A55%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tissue-Specific%20Overexpression%20of%20Lipoprotein%20Lipase%20Causes%20Tissue-Specific%20Insulin%20Resistance&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kim,%20Jason%20K.&rft.date=2001-06-19&rft.volume=98&rft.issue=13&rft.spage=7522&rft.epage=7527&rft.pages=7522-7527&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.121164498&rft_dat=%3Cjstor_pubme%3E3056021%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201402847&rft_id=info:pmid/11390966&rft_jstor_id=3056021&rfr_iscdi=true