Neurotensin Modulates the Electrical Activity of Frog Pituitary Melanotropes via Activation of a G-Protein-Coupled Receptor Pharmacologically Related to Both the NTS1 and nts2 Receptors of Mammals

The primary structure of frog neurotensin (fNT) has recently been determined and it has been shown that fNT is a potent stimulator of α-MSH secretion by frog pituitary melanotropes. In the present study, we have investigated the effects of fNT on the electrical activity of cultured frog melanotropes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroendocrinology 2000-12, Vol.72 (6), p.379-391
Hauptverfasser: Belmeguenai, Amor, Vaudry, Hubert, Leprince, Jérôme, Vivet, Bertrand, Cavelier, Florine, Martinez, Jean, Louiset, Estelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 391
container_issue 6
container_start_page 379
container_title Neuroendocrinology
container_volume 72
creator Belmeguenai, Amor
Vaudry, Hubert
Leprince, Jérôme
Vivet, Bertrand
Cavelier, Florine
Martinez, Jean
Louiset, Estelle
description The primary structure of frog neurotensin (fNT) has recently been determined and it has been shown that fNT is a potent stimulator of α-MSH secretion by frog pituitary melanotropes. In the present study, we have investigated the effects of fNT on the electrical activity of cultured frog melanotropes by using the patch-clamp technique and we have determined the pharmacological profile of the receptors mediating the effect of fNT. In the cell-attached configuration, fNT (10 –7  M) provoked an increase in the action current discharge followed by an arrest of spike firing. In the gramicidin-perforated patch configuration, fNT (10 –7  M) induced a depolarization accompanied by an increase in action potential frequency and a decrease in membrane resistance. Administration of graded concentrations (10 –10 to 10 –6  M) of fNT or the C-terminal hexapeptide NT(8–13) caused a dose-dependent increase in the frequency of action potentials with EC 50 of 2 × 10 –8 and 5 × 10 –9  M, respectively. The stimulatory effect of fNT was mimicked by various pseudopeptide analogs, with the following order of potency: Boc-[Trp 11 ]NT(8–13) > Boc-[D-Trp 11 ]NT(8–13) > Boc-[Lys 8,9 , Nal 11 ]NT(8–13) > Boc-[Ψ11,12]NT(8–13). In contrast, the cyclic pseudopeptide analogs of NT(8–13), Lys-Lys-Pro-D-Trp-Ile-Leu and Lys-Lys-Pro-D-Trp-Glu-Leu-OH, did not affect the electrical activity. The NTS1 receptor antagonist and nts2 receptor agonist SR 48692 (10 –5  M) stimulated the spike discharge but did not block the response to fNT. In contrast, SR 142948A (10 –5  M), another NTS1 receptor antagonist and nts2 receptor agonist, inhibited the excitatory effect of fNT. The specific nts2 receptor ligand levocabastine (10 –6  M) had no effect on the basal electrical activity and the response of melanotropes to fNT. In cells which were dialyzed with guanosine-5′-O-(3-thiotriphosphate) (10 –4  M), fNT caused an irreversible stimulation of the action potential discharge. Conversely, dialysis of melanotropes with guanosine-5′-O-(2-thiodiphosphate) (10 –4  M) completely blocked the effect of fNT. Pretreatment of cells with cholera toxin (1 µg/ml) or pertussis toxin (0.2 µg/ml) did not affect the electrical response to fNT. Intracellular application of the G o/i/s protein antagonist GPAnt-1 (3 × 10 –5  M) had no effect on the fNT-evoked stimulation. In contrast, dialysis of melanotropes with the G q/11 protein antagonist GPAnt-2A (3 × 10 –5  M) abrogated the response to fNT. The present data demonstrate t
doi_str_mv 10.1159/000054607
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11146421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18072635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-c1f0f75d647c8266cf6f53199c8c8269ab3320ee70478befff4247b304d99e3</originalsourceid><addsrcrecordid>eNqFkk2P0zAQhiMEYsvCgTMS8gmJQ1h_xUmOpdoPpHap2L1HrjNuDU7ctZ1K_X_8MBxSdY_ry8j2M-87Hk-WfST4GyFFfYXTKrjA5atsRjhlOSY1f53NMKZVzipWXGTvQvidKFoz-ja7IIRwwSmZZX_vYfAuQh9Mj1auHayMEFDcAbq2oKI3Slo0V9EcTDwip9GNd1u0NnEwUfojWoGVvYve7VPawciJldG4fqQlus3Xo4Hp84Ub9hZa9AsU7KPzaL2TvpPKWbcdbewxXY3-LYoOfXdx97-O-8cHgmTfoj4Gek4Oo_pKdp204X32RqcAH07xMnu4uX5c3OXLn7c_FvNlrpgQMVdEY10WreClqqgQSgtdMFLXqhr3tdwwRjFAiXlZbUBrzSkvNwzztq6BXWZfJ9WdtM3emy49v3HSNHfzZTOepa4LLIQ4kMR-mdi9d08DhNh0JiiwqVfghtCUtGBUVMWLIKlwSQUrnt2VdyF40OcSCG7GKWjOU5DYzyfRYdNB-0yevj0Bnybgj_Rb8GdgSv8HSX-3Iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18072635</pqid></control><display><type>article</type><title>Neurotensin Modulates the Electrical Activity of Frog Pituitary Melanotropes via Activation of a G-Protein-Coupled Receptor Pharmacologically Related to Both the NTS1 and nts2 Receptors of Mammals</title><source>MEDLINE</source><source>Karger Journals Complete</source><creator>Belmeguenai, Amor ; Vaudry, Hubert ; Leprince, Jérôme ; Vivet, Bertrand ; Cavelier, Florine ; Martinez, Jean ; Louiset, Estelle</creator><creatorcontrib>Belmeguenai, Amor ; Vaudry, Hubert ; Leprince, Jérôme ; Vivet, Bertrand ; Cavelier, Florine ; Martinez, Jean ; Louiset, Estelle</creatorcontrib><description>The primary structure of frog neurotensin (fNT) has recently been determined and it has been shown that fNT is a potent stimulator of α-MSH secretion by frog pituitary melanotropes. In the present study, we have investigated the effects of fNT on the electrical activity of cultured frog melanotropes by using the patch-clamp technique and we have determined the pharmacological profile of the receptors mediating the effect of fNT. In the cell-attached configuration, fNT (10 –7  M) provoked an increase in the action current discharge followed by an arrest of spike firing. In the gramicidin-perforated patch configuration, fNT (10 –7  M) induced a depolarization accompanied by an increase in action potential frequency and a decrease in membrane resistance. Administration of graded concentrations (10 –10 to 10 –6  M) of fNT or the C-terminal hexapeptide NT(8–13) caused a dose-dependent increase in the frequency of action potentials with EC 50 of 2 × 10 –8 and 5 × 10 –9  M, respectively. The stimulatory effect of fNT was mimicked by various pseudopeptide analogs, with the following order of potency: Boc-[Trp 11 ]NT(8–13) &gt; Boc-[D-Trp 11 ]NT(8–13) &gt; Boc-[Lys 8,9 , Nal 11 ]NT(8–13) &gt; Boc-[Ψ11,12]NT(8–13). In contrast, the cyclic pseudopeptide analogs of NT(8–13), Lys-Lys-Pro-D-Trp-Ile-Leu and Lys-Lys-Pro-D-Trp-Glu-Leu-OH, did not affect the electrical activity. The NTS1 receptor antagonist and nts2 receptor agonist SR 48692 (10 –5  M) stimulated the spike discharge but did not block the response to fNT. In contrast, SR 142948A (10 –5  M), another NTS1 receptor antagonist and nts2 receptor agonist, inhibited the excitatory effect of fNT. The specific nts2 receptor ligand levocabastine (10 –6  M) had no effect on the basal electrical activity and the response of melanotropes to fNT. In cells which were dialyzed with guanosine-5′-O-(3-thiotriphosphate) (10 –4  M), fNT caused an irreversible stimulation of the action potential discharge. Conversely, dialysis of melanotropes with guanosine-5′-O-(2-thiodiphosphate) (10 –4  M) completely blocked the effect of fNT. Pretreatment of cells with cholera toxin (1 µg/ml) or pertussis toxin (0.2 µg/ml) did not affect the electrical response to fNT. Intracellular application of the G o/i/s protein antagonist GPAnt-1 (3 × 10 –5  M) had no effect on the fNT-evoked stimulation. In contrast, dialysis of melanotropes with the G q/11 protein antagonist GPAnt-2A (3 × 10 –5  M) abrogated the response to fNT. The present data demonstrate that fNT is a potent stimulator of the electrical activity of frog pituitary melanotropes. These results also reveal that the electrophysiological response evoked by fNT can be accounted for by activation of a G q/11 -protein-coupled receptor subtype whose pharmacological profile shares similarities with those of mammalian NTS1 and nts2 receptors.</description><identifier>ISSN: 0028-3835</identifier><identifier>EISSN: 1423-0194</identifier><identifier>DOI: 10.1159/000054607</identifier><identifier>PMID: 11146421</identifier><language>eng</language><publisher>Basel, Switzerland: Karger</publisher><subject>Adamantane ; Adamantane - analogs &amp; derivatives ; Adamantane - pharmacology ; Animals ; Anura ; Cell Behavior ; Cells, Cultured ; Cellular Biology ; Chemical Sciences ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Guanosine 5'-O-(3-Thiotriphosphate) ; Guanosine 5'-O-(3-Thiotriphosphate) - pharmacology ; Guanosine Diphosphate ; Guanosine Diphosphate - analogs &amp; derivatives ; Guanosine Diphosphate - pharmacology ; Heterotrimeric GTP-Binding Proteins ; Heterotrimeric GTP-Binding Proteins - metabolism ; Imidazoles ; Imidazoles - pharmacology ; Life Sciences ; Ligands ; Male ; Mammals ; Medicinal Chemistry ; Melanocytes ; Melanocytes - drug effects ; Melanocytes - metabolism ; melanotropes ; Membrane Potentials ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Neurobiology ; Neurons and Cognition ; Neurotensin ; Neurotensin - metabolism ; Neurotensin - pharmacology ; neurotensin receptors ; Patch-Clamp Techniques ; Peptide Fragments ; Peptide Fragments - metabolism ; Peptide Fragments - pharmacology ; Pharmaceutical sciences ; Pharmacology ; Pituitary Cell Biology ; Pituitary Gland ; Pituitary Gland - cytology ; Pyrazoles ; Pyrazoles - pharmacology ; Quinolines ; Quinolines - pharmacology ; Rana ; Rana ridibunda ; Receptors, Neurotensin ; Receptors, Neurotensin - metabolism ; Signal Transduction ; Signal Transduction - drug effects ; Signal Transduction - physiology ; Thionucleotides ; Thionucleotides - pharmacology</subject><ispartof>Neuroendocrinology, 2000-12, Vol.72 (6), p.379-391</ispartof><rights>2000 S. Karger AG, Basel</rights><rights>Copyright 2000 S. Karger AG, Basel</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-c1f0f75d647c8266cf6f53199c8c8269ab3320ee70478befff4247b304d99e3</citedby><cites>FETCH-LOGICAL-c366t-c1f0f75d647c8266cf6f53199c8c8269ab3320ee70478befff4247b304d99e3</cites><orcidid>0000-0001-5308-6416 ; 0000-0002-7814-9927 ; 0000-0002-4723-095X ; 0000-0003-3295-3095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2429,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11146421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-01960666$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Belmeguenai, Amor</creatorcontrib><creatorcontrib>Vaudry, Hubert</creatorcontrib><creatorcontrib>Leprince, Jérôme</creatorcontrib><creatorcontrib>Vivet, Bertrand</creatorcontrib><creatorcontrib>Cavelier, Florine</creatorcontrib><creatorcontrib>Martinez, Jean</creatorcontrib><creatorcontrib>Louiset, Estelle</creatorcontrib><title>Neurotensin Modulates the Electrical Activity of Frog Pituitary Melanotropes via Activation of a G-Protein-Coupled Receptor Pharmacologically Related to Both the NTS1 and nts2 Receptors of Mammals</title><title>Neuroendocrinology</title><addtitle>Neuroendocrinology</addtitle><description>The primary structure of frog neurotensin (fNT) has recently been determined and it has been shown that fNT is a potent stimulator of α-MSH secretion by frog pituitary melanotropes. In the present study, we have investigated the effects of fNT on the electrical activity of cultured frog melanotropes by using the patch-clamp technique and we have determined the pharmacological profile of the receptors mediating the effect of fNT. In the cell-attached configuration, fNT (10 –7  M) provoked an increase in the action current discharge followed by an arrest of spike firing. In the gramicidin-perforated patch configuration, fNT (10 –7  M) induced a depolarization accompanied by an increase in action potential frequency and a decrease in membrane resistance. Administration of graded concentrations (10 –10 to 10 –6  M) of fNT or the C-terminal hexapeptide NT(8–13) caused a dose-dependent increase in the frequency of action potentials with EC 50 of 2 × 10 –8 and 5 × 10 –9  M, respectively. The stimulatory effect of fNT was mimicked by various pseudopeptide analogs, with the following order of potency: Boc-[Trp 11 ]NT(8–13) &gt; Boc-[D-Trp 11 ]NT(8–13) &gt; Boc-[Lys 8,9 , Nal 11 ]NT(8–13) &gt; Boc-[Ψ11,12]NT(8–13). In contrast, the cyclic pseudopeptide analogs of NT(8–13), Lys-Lys-Pro-D-Trp-Ile-Leu and Lys-Lys-Pro-D-Trp-Glu-Leu-OH, did not affect the electrical activity. The NTS1 receptor antagonist and nts2 receptor agonist SR 48692 (10 –5  M) stimulated the spike discharge but did not block the response to fNT. In contrast, SR 142948A (10 –5  M), another NTS1 receptor antagonist and nts2 receptor agonist, inhibited the excitatory effect of fNT. The specific nts2 receptor ligand levocabastine (10 –6  M) had no effect on the basal electrical activity and the response of melanotropes to fNT. In cells which were dialyzed with guanosine-5′-O-(3-thiotriphosphate) (10 –4  M), fNT caused an irreversible stimulation of the action potential discharge. Conversely, dialysis of melanotropes with guanosine-5′-O-(2-thiodiphosphate) (10 –4  M) completely blocked the effect of fNT. Pretreatment of cells with cholera toxin (1 µg/ml) or pertussis toxin (0.2 µg/ml) did not affect the electrical response to fNT. Intracellular application of the G o/i/s protein antagonist GPAnt-1 (3 × 10 –5  M) had no effect on the fNT-evoked stimulation. In contrast, dialysis of melanotropes with the G q/11 protein antagonist GPAnt-2A (3 × 10 –5  M) abrogated the response to fNT. The present data demonstrate that fNT is a potent stimulator of the electrical activity of frog pituitary melanotropes. These results also reveal that the electrophysiological response evoked by fNT can be accounted for by activation of a G q/11 -protein-coupled receptor subtype whose pharmacological profile shares similarities with those of mammalian NTS1 and nts2 receptors.</description><subject>Adamantane</subject><subject>Adamantane - analogs &amp; derivatives</subject><subject>Adamantane - pharmacology</subject><subject>Animals</subject><subject>Anura</subject><subject>Cell Behavior</subject><subject>Cells, Cultured</subject><subject>Cellular Biology</subject><subject>Chemical Sciences</subject><subject>GTP-Binding Protein alpha Subunits, Gq-G11</subject><subject>Guanosine 5'-O-(3-Thiotriphosphate)</subject><subject>Guanosine 5'-O-(3-Thiotriphosphate) - pharmacology</subject><subject>Guanosine Diphosphate</subject><subject>Guanosine Diphosphate - analogs &amp; derivatives</subject><subject>Guanosine Diphosphate - pharmacology</subject><subject>Heterotrimeric GTP-Binding Proteins</subject><subject>Heterotrimeric GTP-Binding Proteins - metabolism</subject><subject>Imidazoles</subject><subject>Imidazoles - pharmacology</subject><subject>Life Sciences</subject><subject>Ligands</subject><subject>Male</subject><subject>Mammals</subject><subject>Medicinal Chemistry</subject><subject>Melanocytes</subject><subject>Melanocytes - drug effects</subject><subject>Melanocytes - metabolism</subject><subject>melanotropes</subject><subject>Membrane Potentials</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Neurobiology</subject><subject>Neurons and Cognition</subject><subject>Neurotensin</subject><subject>Neurotensin - metabolism</subject><subject>Neurotensin - pharmacology</subject><subject>neurotensin receptors</subject><subject>Patch-Clamp Techniques</subject><subject>Peptide Fragments</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptide Fragments - pharmacology</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Pituitary Cell Biology</subject><subject>Pituitary Gland</subject><subject>Pituitary Gland - cytology</subject><subject>Pyrazoles</subject><subject>Pyrazoles - pharmacology</subject><subject>Quinolines</subject><subject>Quinolines - pharmacology</subject><subject>Rana</subject><subject>Rana ridibunda</subject><subject>Receptors, Neurotensin</subject><subject>Receptors, Neurotensin - metabolism</subject><subject>Signal Transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><subject>Thionucleotides</subject><subject>Thionucleotides - pharmacology</subject><issn>0028-3835</issn><issn>1423-0194</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2P0zAQhiMEYsvCgTMS8gmJQ1h_xUmOpdoPpHap2L1HrjNuDU7ctZ1K_X_8MBxSdY_ry8j2M-87Hk-WfST4GyFFfYXTKrjA5atsRjhlOSY1f53NMKZVzipWXGTvQvidKFoz-ja7IIRwwSmZZX_vYfAuQh9Mj1auHayMEFDcAbq2oKI3Slo0V9EcTDwip9GNd1u0NnEwUfojWoGVvYve7VPawciJldG4fqQlus3Xo4Hp84Ub9hZa9AsU7KPzaL2TvpPKWbcdbewxXY3-LYoOfXdx97-O-8cHgmTfoj4Gek4Oo_pKdp204X32RqcAH07xMnu4uX5c3OXLn7c_FvNlrpgQMVdEY10WreClqqgQSgtdMFLXqhr3tdwwRjFAiXlZbUBrzSkvNwzztq6BXWZfJ9WdtM3emy49v3HSNHfzZTOepa4LLIQ4kMR-mdi9d08DhNh0JiiwqVfghtCUtGBUVMWLIKlwSQUrnt2VdyF40OcSCG7GKWjOU5DYzyfRYdNB-0yevj0Bnybgj_Rb8GdgSv8HSX-3Iw</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Belmeguenai, Amor</creator><creator>Vaudry, Hubert</creator><creator>Leprince, Jérôme</creator><creator>Vivet, Bertrand</creator><creator>Cavelier, Florine</creator><creator>Martinez, Jean</creator><creator>Louiset, Estelle</creator><general>Karger</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5308-6416</orcidid><orcidid>https://orcid.org/0000-0002-7814-9927</orcidid><orcidid>https://orcid.org/0000-0002-4723-095X</orcidid><orcidid>https://orcid.org/0000-0003-3295-3095</orcidid></search><sort><creationdate>20001201</creationdate><title>Neurotensin Modulates the Electrical Activity of Frog Pituitary Melanotropes via Activation of a G-Protein-Coupled Receptor Pharmacologically Related to Both the NTS1 and nts2 Receptors of Mammals</title><author>Belmeguenai, Amor ; Vaudry, Hubert ; Leprince, Jérôme ; Vivet, Bertrand ; Cavelier, Florine ; Martinez, Jean ; Louiset, Estelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-c1f0f75d647c8266cf6f53199c8c8269ab3320ee70478befff4247b304d99e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adamantane</topic><topic>Adamantane - analogs &amp; derivatives</topic><topic>Adamantane - pharmacology</topic><topic>Animals</topic><topic>Anura</topic><topic>Cell Behavior</topic><topic>Cells, Cultured</topic><topic>Cellular Biology</topic><topic>Chemical Sciences</topic><topic>GTP-Binding Protein alpha Subunits, Gq-G11</topic><topic>Guanosine 5'-O-(3-Thiotriphosphate)</topic><topic>Guanosine 5'-O-(3-Thiotriphosphate) - pharmacology</topic><topic>Guanosine Diphosphate</topic><topic>Guanosine Diphosphate - analogs &amp; derivatives</topic><topic>Guanosine Diphosphate - pharmacology</topic><topic>Heterotrimeric GTP-Binding Proteins</topic><topic>Heterotrimeric GTP-Binding Proteins - metabolism</topic><topic>Imidazoles</topic><topic>Imidazoles - pharmacology</topic><topic>Life Sciences</topic><topic>Ligands</topic><topic>Male</topic><topic>Mammals</topic><topic>Medicinal Chemistry</topic><topic>Melanocytes</topic><topic>Melanocytes - drug effects</topic><topic>Melanocytes - metabolism</topic><topic>melanotropes</topic><topic>Membrane Potentials</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Neurobiology</topic><topic>Neurons and Cognition</topic><topic>Neurotensin</topic><topic>Neurotensin - metabolism</topic><topic>Neurotensin - pharmacology</topic><topic>neurotensin receptors</topic><topic>Patch-Clamp Techniques</topic><topic>Peptide Fragments</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptide Fragments - pharmacology</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Pituitary Cell Biology</topic><topic>Pituitary Gland</topic><topic>Pituitary Gland - cytology</topic><topic>Pyrazoles</topic><topic>Pyrazoles - pharmacology</topic><topic>Quinolines</topic><topic>Quinolines - pharmacology</topic><topic>Rana</topic><topic>Rana ridibunda</topic><topic>Receptors, Neurotensin</topic><topic>Receptors, Neurotensin - metabolism</topic><topic>Signal Transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><topic>Thionucleotides</topic><topic>Thionucleotides - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belmeguenai, Amor</creatorcontrib><creatorcontrib>Vaudry, Hubert</creatorcontrib><creatorcontrib>Leprince, Jérôme</creatorcontrib><creatorcontrib>Vivet, Bertrand</creatorcontrib><creatorcontrib>Cavelier, Florine</creatorcontrib><creatorcontrib>Martinez, Jean</creatorcontrib><creatorcontrib>Louiset, Estelle</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neuroendocrinology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belmeguenai, Amor</au><au>Vaudry, Hubert</au><au>Leprince, Jérôme</au><au>Vivet, Bertrand</au><au>Cavelier, Florine</au><au>Martinez, Jean</au><au>Louiset, Estelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neurotensin Modulates the Electrical Activity of Frog Pituitary Melanotropes via Activation of a G-Protein-Coupled Receptor Pharmacologically Related to Both the NTS1 and nts2 Receptors of Mammals</atitle><jtitle>Neuroendocrinology</jtitle><addtitle>Neuroendocrinology</addtitle><date>2000-12-01</date><risdate>2000</risdate><volume>72</volume><issue>6</issue><spage>379</spage><epage>391</epage><pages>379-391</pages><issn>0028-3835</issn><eissn>1423-0194</eissn><abstract>The primary structure of frog neurotensin (fNT) has recently been determined and it has been shown that fNT is a potent stimulator of α-MSH secretion by frog pituitary melanotropes. In the present study, we have investigated the effects of fNT on the electrical activity of cultured frog melanotropes by using the patch-clamp technique and we have determined the pharmacological profile of the receptors mediating the effect of fNT. In the cell-attached configuration, fNT (10 –7  M) provoked an increase in the action current discharge followed by an arrest of spike firing. In the gramicidin-perforated patch configuration, fNT (10 –7  M) induced a depolarization accompanied by an increase in action potential frequency and a decrease in membrane resistance. Administration of graded concentrations (10 –10 to 10 –6  M) of fNT or the C-terminal hexapeptide NT(8–13) caused a dose-dependent increase in the frequency of action potentials with EC 50 of 2 × 10 –8 and 5 × 10 –9  M, respectively. The stimulatory effect of fNT was mimicked by various pseudopeptide analogs, with the following order of potency: Boc-[Trp 11 ]NT(8–13) &gt; Boc-[D-Trp 11 ]NT(8–13) &gt; Boc-[Lys 8,9 , Nal 11 ]NT(8–13) &gt; Boc-[Ψ11,12]NT(8–13). In contrast, the cyclic pseudopeptide analogs of NT(8–13), Lys-Lys-Pro-D-Trp-Ile-Leu and Lys-Lys-Pro-D-Trp-Glu-Leu-OH, did not affect the electrical activity. The NTS1 receptor antagonist and nts2 receptor agonist SR 48692 (10 –5  M) stimulated the spike discharge but did not block the response to fNT. In contrast, SR 142948A (10 –5  M), another NTS1 receptor antagonist and nts2 receptor agonist, inhibited the excitatory effect of fNT. The specific nts2 receptor ligand levocabastine (10 –6  M) had no effect on the basal electrical activity and the response of melanotropes to fNT. In cells which were dialyzed with guanosine-5′-O-(3-thiotriphosphate) (10 –4  M), fNT caused an irreversible stimulation of the action potential discharge. Conversely, dialysis of melanotropes with guanosine-5′-O-(2-thiodiphosphate) (10 –4  M) completely blocked the effect of fNT. Pretreatment of cells with cholera toxin (1 µg/ml) or pertussis toxin (0.2 µg/ml) did not affect the electrical response to fNT. Intracellular application of the G o/i/s protein antagonist GPAnt-1 (3 × 10 –5  M) had no effect on the fNT-evoked stimulation. In contrast, dialysis of melanotropes with the G q/11 protein antagonist GPAnt-2A (3 × 10 –5  M) abrogated the response to fNT. The present data demonstrate that fNT is a potent stimulator of the electrical activity of frog pituitary melanotropes. These results also reveal that the electrophysiological response evoked by fNT can be accounted for by activation of a G q/11 -protein-coupled receptor subtype whose pharmacological profile shares similarities with those of mammalian NTS1 and nts2 receptors.</abstract><cop>Basel, Switzerland</cop><pub>Karger</pub><pmid>11146421</pmid><doi>10.1159/000054607</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5308-6416</orcidid><orcidid>https://orcid.org/0000-0002-7814-9927</orcidid><orcidid>https://orcid.org/0000-0002-4723-095X</orcidid><orcidid>https://orcid.org/0000-0003-3295-3095</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-3835
ispartof Neuroendocrinology, 2000-12, Vol.72 (6), p.379-391
issn 0028-3835
1423-0194
language eng
recordid cdi_pubmed_primary_11146421
source MEDLINE; Karger Journals Complete
subjects Adamantane
Adamantane - analogs & derivatives
Adamantane - pharmacology
Animals
Anura
Cell Behavior
Cells, Cultured
Cellular Biology
Chemical Sciences
GTP-Binding Protein alpha Subunits, Gq-G11
Guanosine 5'-O-(3-Thiotriphosphate)
Guanosine 5'-O-(3-Thiotriphosphate) - pharmacology
Guanosine Diphosphate
Guanosine Diphosphate - analogs & derivatives
Guanosine Diphosphate - pharmacology
Heterotrimeric GTP-Binding Proteins
Heterotrimeric GTP-Binding Proteins - metabolism
Imidazoles
Imidazoles - pharmacology
Life Sciences
Ligands
Male
Mammals
Medicinal Chemistry
Melanocytes
Melanocytes - drug effects
Melanocytes - metabolism
melanotropes
Membrane Potentials
Membrane Potentials - drug effects
Membrane Potentials - physiology
Neurobiology
Neurons and Cognition
Neurotensin
Neurotensin - metabolism
Neurotensin - pharmacology
neurotensin receptors
Patch-Clamp Techniques
Peptide Fragments
Peptide Fragments - metabolism
Peptide Fragments - pharmacology
Pharmaceutical sciences
Pharmacology
Pituitary Cell Biology
Pituitary Gland
Pituitary Gland - cytology
Pyrazoles
Pyrazoles - pharmacology
Quinolines
Quinolines - pharmacology
Rana
Rana ridibunda
Receptors, Neurotensin
Receptors, Neurotensin - metabolism
Signal Transduction
Signal Transduction - drug effects
Signal Transduction - physiology
Thionucleotides
Thionucleotides - pharmacology
title Neurotensin Modulates the Electrical Activity of Frog Pituitary Melanotropes via Activation of a G-Protein-Coupled Receptor Pharmacologically Related to Both the NTS1 and nts2 Receptors of Mammals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A32%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neurotensin%20Modulates%20the%20Electrical%20Activity%20of%20Frog%20Pituitary%20Melanotropes%20via%20Activation%20of%20a%20G-Protein-Coupled%20Receptor%20Pharmacologically%20Related%20to%20Both%20the%20NTS1%20and%20nts2%20Receptors%20of%20Mammals&rft.jtitle=Neuroendocrinology&rft.au=Belmeguenai,%20Amor&rft.date=2000-12-01&rft.volume=72&rft.issue=6&rft.spage=379&rft.epage=391&rft.pages=379-391&rft.issn=0028-3835&rft.eissn=1423-0194&rft_id=info:doi/10.1159/000054607&rft_dat=%3Cproquest_pubme%3E18072635%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18072635&rft_id=info:pmid/11146421&rfr_iscdi=true