Three Conformational States of Scallop Myosin S1

We have determined the structure of the intact scallop myosin head, containing both the motor domain and the lever arm, in the nucleotide-free state and in the presence of MgADP· VO4, corresponding to the transition state. These two new structures, together with the previously determined structure o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2000-10, Vol.97 (21), p.11238-11243
Hauptverfasser: Houdusse, A., Szent-Gyorgyi, A. G., Cohen, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11243
container_issue 21
container_start_page 11238
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Houdusse, A.
Szent-Gyorgyi, A. G.
Cohen, C.
description We have determined the structure of the intact scallop myosin head, containing both the motor domain and the lever arm, in the nucleotide-free state and in the presence of MgADP· VO4, corresponding to the transition state. These two new structures, together with the previously determined structure of scallop S1 complexed with MgADP (which we interpret as a detached ATP state), reveal three conformations of an intact S1 obtained from a single isoform. These studies, together with new crystallization results, show how the conformation of the motor depends on the nucleotide content of the active site. The resolution of the two new structures (≈ 4 angstrom) is sufficient to establish the relative positions of the subdomains and the overall conformation of the joints within the motor domain as well as the position of the lever arm. Comparison of available crystal structures from different myosin isoforms and truncated constructs in either the nucleotide-free or transition states indicates that the major features within the motor domain are relatively invariant in both these states. In contrast, the position of the lever arm varies significantly between different isoforms. These results indicate that the heavy-chain helix is pliant at the junction between the converter and the lever arm and that factors other than the precise position of the converter can influence the position of the lever arm. It is possible that this pliant junction in the myosin head contributes to the compliance known to be present in the crossbridge.
doi_str_mv 10.1073/pnas.200376897
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_11016966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>123380</jstor_id><sourcerecordid>123380</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-c258848379ebdd6afae399d67e2e10b40572f37c4c3739f1f2d5974f7470c92c3</originalsourceid><addsrcrecordid>eNqF0c2PEyEYBnBiNG5dvXox0YkH42Xq-wIzQOLFNH4lazx0PRPKgDsNHSowxv3vpWndVQ964vD-Hr4eQh4jLBEEe7WfTF5SACZ6qcQdskBQ2PZcwV2yAKCilZzyM_Ig5y0AqE7CfXKGCNirvl8QuLxKzjWrOPmYdqaMcTKhWRdTXG6ib9bWhBD3zafrmMepWeNDcs-bkN2j03pOvrx7e7n60F58fv9x9eaitZ3sSmtpJyWXTCi3GYbeeOOYUkMvHHUIGw6doJ4Jyy0TTHn0dOiU4F5wAVZRy87J6-O--3mzc4N1U0km6H0adyZd62hG_edkGq_01_hdo0DJa_zFKZ7it9nlondjti4EM7k4Zy0oo8AU_heiEBQ5VxU-_wtu45zqb2VNARlHKrqKlkdkU8w5OX9zYQR9KEwfCtM3hdXA09-fectPDVXw8gQOwV9jJTTFiiiT2s8hFPejVPrs37SKJ0exzSWm28MoYxLYT69XsWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201341275</pqid></control><display><type>article</type><title>Three Conformational States of Scallop Myosin S1</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Houdusse, A. ; Szent-Gyorgyi, A. G. ; Cohen, C.</creator><creatorcontrib>Houdusse, A. ; Szent-Gyorgyi, A. G. ; Cohen, C.</creatorcontrib><description>We have determined the structure of the intact scallop myosin head, containing both the motor domain and the lever arm, in the nucleotide-free state and in the presence of MgADP· VO4, corresponding to the transition state. These two new structures, together with the previously determined structure of scallop S1 complexed with MgADP (which we interpret as a detached ATP state), reveal three conformations of an intact S1 obtained from a single isoform. These studies, together with new crystallization results, show how the conformation of the motor depends on the nucleotide content of the active site. The resolution of the two new structures (≈ 4 angstrom) is sufficient to establish the relative positions of the subdomains and the overall conformation of the joints within the motor domain as well as the position of the lever arm. Comparison of available crystal structures from different myosin isoforms and truncated constructs in either the nucleotide-free or transition states indicates that the major features within the motor domain are relatively invariant in both these states. In contrast, the position of the lever arm varies significantly between different isoforms. These results indicate that the heavy-chain helix is pliant at the junction between the converter and the lever arm and that factors other than the precise position of the converter can influence the position of the lever arm. It is possible that this pliant junction in the myosin head contributes to the compliance known to be present in the crossbridge.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.200376897</identifier><identifier>PMID: 11016966</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Actins ; Animals ; Arm ; Binding Sites ; Biochemistry ; Biological Sciences ; Chickens ; Crystal structure ; Crystallography, X-Ray ; Crystals ; Microfilaments ; Mollusca ; Mollusks ; Myosins - chemistry ; Nucleotides ; Pectinidae ; Protein Conformation ; Protein isoforms ; Scallops ; Smooth muscle</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-10, Vol.97 (21), p.11238-11243</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 10, 2000</rights><rights>Copyright © 2000, The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-c258848379ebdd6afae399d67e2e10b40572f37c4c3739f1f2d5974f7470c92c3</citedby><cites>FETCH-LOGICAL-c585t-c258848379ebdd6afae399d67e2e10b40572f37c4c3739f1f2d5974f7470c92c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/123380$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/123380$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11016966$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Houdusse, A.</creatorcontrib><creatorcontrib>Szent-Gyorgyi, A. G.</creatorcontrib><creatorcontrib>Cohen, C.</creatorcontrib><title>Three Conformational States of Scallop Myosin S1</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We have determined the structure of the intact scallop myosin head, containing both the motor domain and the lever arm, in the nucleotide-free state and in the presence of MgADP· VO4, corresponding to the transition state. These two new structures, together with the previously determined structure of scallop S1 complexed with MgADP (which we interpret as a detached ATP state), reveal three conformations of an intact S1 obtained from a single isoform. These studies, together with new crystallization results, show how the conformation of the motor depends on the nucleotide content of the active site. The resolution of the two new structures (≈ 4 angstrom) is sufficient to establish the relative positions of the subdomains and the overall conformation of the joints within the motor domain as well as the position of the lever arm. Comparison of available crystal structures from different myosin isoforms and truncated constructs in either the nucleotide-free or transition states indicates that the major features within the motor domain are relatively invariant in both these states. In contrast, the position of the lever arm varies significantly between different isoforms. These results indicate that the heavy-chain helix is pliant at the junction between the converter and the lever arm and that factors other than the precise position of the converter can influence the position of the lever arm. It is possible that this pliant junction in the myosin head contributes to the compliance known to be present in the crossbridge.</description><subject>Actins</subject><subject>Animals</subject><subject>Arm</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Chickens</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Microfilaments</subject><subject>Mollusca</subject><subject>Mollusks</subject><subject>Myosins - chemistry</subject><subject>Nucleotides</subject><subject>Pectinidae</subject><subject>Protein Conformation</subject><subject>Protein isoforms</subject><subject>Scallops</subject><subject>Smooth muscle</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c2PEyEYBnBiNG5dvXox0YkH42Xq-wIzQOLFNH4lazx0PRPKgDsNHSowxv3vpWndVQ964vD-Hr4eQh4jLBEEe7WfTF5SACZ6qcQdskBQ2PZcwV2yAKCilZzyM_Ig5y0AqE7CfXKGCNirvl8QuLxKzjWrOPmYdqaMcTKhWRdTXG6ib9bWhBD3zafrmMepWeNDcs-bkN2j03pOvrx7e7n60F58fv9x9eaitZ3sSmtpJyWXTCi3GYbeeOOYUkMvHHUIGw6doJ4Jyy0TTHn0dOiU4F5wAVZRy87J6-O--3mzc4N1U0km6H0adyZd62hG_edkGq_01_hdo0DJa_zFKZ7it9nlondjti4EM7k4Zy0oo8AU_heiEBQ5VxU-_wtu45zqb2VNARlHKrqKlkdkU8w5OX9zYQR9KEwfCtM3hdXA09-fectPDVXw8gQOwV9jJTTFiiiT2s8hFPejVPrs37SKJ0exzSWm28MoYxLYT69XsWA</recordid><startdate>20001010</startdate><enddate>20001010</enddate><creator>Houdusse, A.</creator><creator>Szent-Gyorgyi, A. G.</creator><creator>Cohen, C.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>F1W</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20001010</creationdate><title>Three Conformational States of Scallop Myosin S1</title><author>Houdusse, A. ; Szent-Gyorgyi, A. G. ; Cohen, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-c258848379ebdd6afae399d67e2e10b40572f37c4c3739f1f2d5974f7470c92c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Actins</topic><topic>Animals</topic><topic>Arm</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Chickens</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Microfilaments</topic><topic>Mollusca</topic><topic>Mollusks</topic><topic>Myosins - chemistry</topic><topic>Nucleotides</topic><topic>Pectinidae</topic><topic>Protein Conformation</topic><topic>Protein isoforms</topic><topic>Scallops</topic><topic>Smooth muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houdusse, A.</creatorcontrib><creatorcontrib>Szent-Gyorgyi, A. G.</creatorcontrib><creatorcontrib>Cohen, C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houdusse, A.</au><au>Szent-Gyorgyi, A. G.</au><au>Cohen, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three Conformational States of Scallop Myosin S1</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-10-10</date><risdate>2000</risdate><volume>97</volume><issue>21</issue><spage>11238</spage><epage>11243</epage><pages>11238-11243</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We have determined the structure of the intact scallop myosin head, containing both the motor domain and the lever arm, in the nucleotide-free state and in the presence of MgADP· VO4, corresponding to the transition state. These two new structures, together with the previously determined structure of scallop S1 complexed with MgADP (which we interpret as a detached ATP state), reveal three conformations of an intact S1 obtained from a single isoform. These studies, together with new crystallization results, show how the conformation of the motor depends on the nucleotide content of the active site. The resolution of the two new structures (≈ 4 angstrom) is sufficient to establish the relative positions of the subdomains and the overall conformation of the joints within the motor domain as well as the position of the lever arm. Comparison of available crystal structures from different myosin isoforms and truncated constructs in either the nucleotide-free or transition states indicates that the major features within the motor domain are relatively invariant in both these states. In contrast, the position of the lever arm varies significantly between different isoforms. These results indicate that the heavy-chain helix is pliant at the junction between the converter and the lever arm and that factors other than the precise position of the converter can influence the position of the lever arm. It is possible that this pliant junction in the myosin head contributes to the compliance known to be present in the crossbridge.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>11016966</pmid><doi>10.1073/pnas.200376897</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-10, Vol.97 (21), p.11238-11243
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_11016966
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Actins
Animals
Arm
Binding Sites
Biochemistry
Biological Sciences
Chickens
Crystal structure
Crystallography, X-Ray
Crystals
Microfilaments
Mollusca
Mollusks
Myosins - chemistry
Nucleotides
Pectinidae
Protein Conformation
Protein isoforms
Scallops
Smooth muscle
title Three Conformational States of Scallop Myosin S1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20Conformational%20States%20of%20Scallop%20Myosin%20S1&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Houdusse,%20A.&rft.date=2000-10-10&rft.volume=97&rft.issue=21&rft.spage=11238&rft.epage=11243&rft.pages=11238-11243&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.200376897&rft_dat=%3Cjstor_pubme%3E123380%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201341275&rft_id=info:pmid/11016966&rft_jstor_id=123380&rfr_iscdi=true