Nociception in Cyclooxygenase Isozyme-Deficient Mice

Prostaglandins formed by cyclooxygenase-1 (COX-1) or COX-2 produce hyperalgesia in sensory nerve endings. To assess the relative roles of the two enzymes in pain processing, we compared responses of COX-1- or COX-2-deficient homozygous and heterozygous mice with wild-type controls in the hot plate a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2000-08, Vol.97 (18), p.10272-10276
Hauptverfasser: Ballou, L R, Botting, R M, Goorha, S, Zhang, J, Vane, J R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10276
container_issue 18
container_start_page 10272
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator Ballou, L R
Botting, R M
Goorha, S
Zhang, J
Vane, J R
description Prostaglandins formed by cyclooxygenase-1 (COX-1) or COX-2 produce hyperalgesia in sensory nerve endings. To assess the relative roles of the two enzymes in pain processing, we compared responses of COX-1- or COX-2-deficient homozygous and heterozygous mice with wild-type controls in the hot plate and stretching tests for analgesia. Preliminary observational studies determined that there were no differences in gross parameters of behavior between the different groups. Surprisingly, on the hot plate (55 degrees C), the COX-1-deficient heterozygous groups showed less nociception, because mean reaction time was longer than that for controls. All other groups showed similar reaction times. In the stretching test, there was less nociception in COX-1-null and COX-1-deficient heterozygotes and also, unexpectedly, in female COX-2-deficient heterozygotes, as shown by a decreased number of writhes. Measurements of mRNA levels by reverse transcription-PCR demonstrated a compensatory increase of COX-1 mRNA in spinal cords of COX-2-null mice but no increase in COX-2 mRNA in spinal cords of COX-1-null animals. Thus, compensation for the absence of COX-1 may not involve increased expression of COX-2, whereas up-regulation of COX-1 in the spinal cord may compensate for the absence of COX-2. The longer reaction times on the hot plate of COX-1-deficient heterozygotes are difficult to explain, because nonsteroid anti-inflammatory drugs have no analgesic action in this test. Reduction in the number of writhes of the COX-1-null and COX-1-deficient heterozygotes may be due to low levels of COX-1 at the site of stimulation with acetic acid. Thus, prostaglandins made by COX-1 mainly are involved in pain transmission in the stretching test in both male and female mice, whereas those made by COX-2 also may play a role in the stretching response in female mice.
doi_str_mv 10.1073/pnas.180319297
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_10954756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>123349</jstor_id><sourcerecordid>123349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-492f613e3df2a9e528df4af56c6a92b1bf8f8e6da6807f90acdca391d043ec773</originalsourceid><addsrcrecordid>eNqF0UtPGzEQAGALUZVAe-WCBFEPVS-bjh-7tiUuVegDibaX9mw53jE42qzDehcl_HqcJqWUQ3vyYb55eIaQYwoTCpK_X7Y2TagCTjXTco-MKGhaVELDPhkBMFkowcQBOUxpDgC6VPCSHGRUCllWIyK-RRccLvsQ23Fox9O1a2Jcra8xF8bxZYr36wUWF-iDC9j2469ZvyIvvG0Svt69R-Tnp48_pl-Kq--fL6cfrgpXqrIvhGa-ohx57ZnVWDJVe2F9WbnKajajM6-8wqq2lQLpNVhXO8s1rUFwdFLyI3K-rbscZgusXe7f2cYsu7Cw3dpEG8zfkTbcmOt4Z5hUlcrpb3fpXbwdMPVmEZLDprEtxiEZyRgoTdl_Yd4vU6WiGb55Budx6Nq8A8OAcsX5r6knW-S6mFKH_nFgCmZzNLM5mnk8Wk44ffrNJ3x7pQze7cAm8XdYy1wjIyaZ8UPT9LjqMz37N83iZCvmqY_dn2aMc6H5AyYVtNM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201383377</pqid></control><display><type>article</type><title>Nociception in Cyclooxygenase Isozyme-Deficient Mice</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ballou, L R ; Botting, R M ; Goorha, S ; Zhang, J ; Vane, J R</creator><creatorcontrib>Ballou, L R ; Botting, R M ; Goorha, S ; Zhang, J ; Vane, J R</creatorcontrib><description>Prostaglandins formed by cyclooxygenase-1 (COX-1) or COX-2 produce hyperalgesia in sensory nerve endings. To assess the relative roles of the two enzymes in pain processing, we compared responses of COX-1- or COX-2-deficient homozygous and heterozygous mice with wild-type controls in the hot plate and stretching tests for analgesia. Preliminary observational studies determined that there were no differences in gross parameters of behavior between the different groups. Surprisingly, on the hot plate (55 degrees C), the COX-1-deficient heterozygous groups showed less nociception, because mean reaction time was longer than that for controls. All other groups showed similar reaction times. In the stretching test, there was less nociception in COX-1-null and COX-1-deficient heterozygotes and also, unexpectedly, in female COX-2-deficient heterozygotes, as shown by a decreased number of writhes. Measurements of mRNA levels by reverse transcription-PCR demonstrated a compensatory increase of COX-1 mRNA in spinal cords of COX-2-null mice but no increase in COX-2 mRNA in spinal cords of COX-1-null animals. Thus, compensation for the absence of COX-1 may not involve increased expression of COX-2, whereas up-regulation of COX-1 in the spinal cord may compensate for the absence of COX-2. The longer reaction times on the hot plate of COX-1-deficient heterozygotes are difficult to explain, because nonsteroid anti-inflammatory drugs have no analgesic action in this test. Reduction in the number of writhes of the COX-1-null and COX-1-deficient heterozygotes may be due to low levels of COX-1 at the site of stimulation with acetic acid. Thus, prostaglandins made by COX-1 mainly are involved in pain transmission in the stretching test in both male and female mice, whereas those made by COX-2 also may play a role in the stretching response in female mice.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.180319297</identifier><identifier>PMID: 10954756</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Analgesics ; Animals ; Behavior, Animal ; Biochemistry ; Biological Sciences ; Crosses, Genetic ; Cyclooxygenase 1 ; Cyclooxygenase 2 ; Cyclooxygenase inhibitors ; Enzymes ; Female ; Female animals ; Genetics ; Heterozygotes ; Homozygote ; Hot Temperature ; Isoenzymes - deficiency ; Isoenzymes - genetics ; Isoenzymes - metabolism ; Male ; Male animals ; Membrane Proteins ; Messenger RNA ; Mice ; Mice, Inbred C57BL ; Mice, Inbred DBA ; Mice, Knockout ; Pain ; Pain - genetics ; Pain - physiopathology ; Pharmacology ; Prostaglandin-Endoperoxide Synthases - deficiency ; Prostaglandin-Endoperoxide Synthases - genetics ; Prostaglandin-Endoperoxide Synthases - metabolism ; Reaction Time ; Reverse Transcriptase Polymerase Chain Reaction ; Rodents ; Sex Characteristics ; Spinal cord</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-08, Vol.97 (18), p.10272-10276</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 29, 2000</rights><rights>Copyright © The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-492f613e3df2a9e528df4af56c6a92b1bf8f8e6da6807f90acdca391d043ec773</citedby><cites>FETCH-LOGICAL-c585t-492f613e3df2a9e528df4af56c6a92b1bf8f8e6da6807f90acdca391d043ec773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/18.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/123349$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/123349$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10954756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ballou, L R</creatorcontrib><creatorcontrib>Botting, R M</creatorcontrib><creatorcontrib>Goorha, S</creatorcontrib><creatorcontrib>Zhang, J</creatorcontrib><creatorcontrib>Vane, J R</creatorcontrib><title>Nociception in Cyclooxygenase Isozyme-Deficient Mice</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Prostaglandins formed by cyclooxygenase-1 (COX-1) or COX-2 produce hyperalgesia in sensory nerve endings. To assess the relative roles of the two enzymes in pain processing, we compared responses of COX-1- or COX-2-deficient homozygous and heterozygous mice with wild-type controls in the hot plate and stretching tests for analgesia. Preliminary observational studies determined that there were no differences in gross parameters of behavior between the different groups. Surprisingly, on the hot plate (55 degrees C), the COX-1-deficient heterozygous groups showed less nociception, because mean reaction time was longer than that for controls. All other groups showed similar reaction times. In the stretching test, there was less nociception in COX-1-null and COX-1-deficient heterozygotes and also, unexpectedly, in female COX-2-deficient heterozygotes, as shown by a decreased number of writhes. Measurements of mRNA levels by reverse transcription-PCR demonstrated a compensatory increase of COX-1 mRNA in spinal cords of COX-2-null mice but no increase in COX-2 mRNA in spinal cords of COX-1-null animals. Thus, compensation for the absence of COX-1 may not involve increased expression of COX-2, whereas up-regulation of COX-1 in the spinal cord may compensate for the absence of COX-2. The longer reaction times on the hot plate of COX-1-deficient heterozygotes are difficult to explain, because nonsteroid anti-inflammatory drugs have no analgesic action in this test. Reduction in the number of writhes of the COX-1-null and COX-1-deficient heterozygotes may be due to low levels of COX-1 at the site of stimulation with acetic acid. Thus, prostaglandins made by COX-1 mainly are involved in pain transmission in the stretching test in both male and female mice, whereas those made by COX-2 also may play a role in the stretching response in female mice.</description><subject>Analgesics</subject><subject>Animals</subject><subject>Behavior, Animal</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Crosses, Genetic</subject><subject>Cyclooxygenase 1</subject><subject>Cyclooxygenase 2</subject><subject>Cyclooxygenase inhibitors</subject><subject>Enzymes</subject><subject>Female</subject><subject>Female animals</subject><subject>Genetics</subject><subject>Heterozygotes</subject><subject>Homozygote</subject><subject>Hot Temperature</subject><subject>Isoenzymes - deficiency</subject><subject>Isoenzymes - genetics</subject><subject>Isoenzymes - metabolism</subject><subject>Male</subject><subject>Male animals</subject><subject>Membrane Proteins</subject><subject>Messenger RNA</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred DBA</subject><subject>Mice, Knockout</subject><subject>Pain</subject><subject>Pain - genetics</subject><subject>Pain - physiopathology</subject><subject>Pharmacology</subject><subject>Prostaglandin-Endoperoxide Synthases - deficiency</subject><subject>Prostaglandin-Endoperoxide Synthases - genetics</subject><subject>Prostaglandin-Endoperoxide Synthases - metabolism</subject><subject>Reaction Time</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Rodents</subject><subject>Sex Characteristics</subject><subject>Spinal cord</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0UtPGzEQAGALUZVAe-WCBFEPVS-bjh-7tiUuVegDibaX9mw53jE42qzDehcl_HqcJqWUQ3vyYb55eIaQYwoTCpK_X7Y2TagCTjXTco-MKGhaVELDPhkBMFkowcQBOUxpDgC6VPCSHGRUCllWIyK-RRccLvsQ23Fox9O1a2Jcra8xF8bxZYr36wUWF-iDC9j2469ZvyIvvG0Svt69R-Tnp48_pl-Kq--fL6cfrgpXqrIvhGa-ohx57ZnVWDJVe2F9WbnKajajM6-8wqq2lQLpNVhXO8s1rUFwdFLyI3K-rbscZgusXe7f2cYsu7Cw3dpEG8zfkTbcmOt4Z5hUlcrpb3fpXbwdMPVmEZLDprEtxiEZyRgoTdl_Yd4vU6WiGb55Budx6Nq8A8OAcsX5r6knW-S6mFKH_nFgCmZzNLM5mnk8Wk44ffrNJ3x7pQze7cAm8XdYy1wjIyaZ8UPT9LjqMz37N83iZCvmqY_dn2aMc6H5AyYVtNM</recordid><startdate>20000829</startdate><enddate>20000829</enddate><creator>Ballou, L R</creator><creator>Botting, R M</creator><creator>Goorha, S</creator><creator>Zhang, J</creator><creator>Vane, J R</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000829</creationdate><title>Nociception in Cyclooxygenase Isozyme-Deficient Mice</title><author>Ballou, L R ; Botting, R M ; Goorha, S ; Zhang, J ; Vane, J R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-492f613e3df2a9e528df4af56c6a92b1bf8f8e6da6807f90acdca391d043ec773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Analgesics</topic><topic>Animals</topic><topic>Behavior, Animal</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Crosses, Genetic</topic><topic>Cyclooxygenase 1</topic><topic>Cyclooxygenase 2</topic><topic>Cyclooxygenase inhibitors</topic><topic>Enzymes</topic><topic>Female</topic><topic>Female animals</topic><topic>Genetics</topic><topic>Heterozygotes</topic><topic>Homozygote</topic><topic>Hot Temperature</topic><topic>Isoenzymes - deficiency</topic><topic>Isoenzymes - genetics</topic><topic>Isoenzymes - metabolism</topic><topic>Male</topic><topic>Male animals</topic><topic>Membrane Proteins</topic><topic>Messenger RNA</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred DBA</topic><topic>Mice, Knockout</topic><topic>Pain</topic><topic>Pain - genetics</topic><topic>Pain - physiopathology</topic><topic>Pharmacology</topic><topic>Prostaglandin-Endoperoxide Synthases - deficiency</topic><topic>Prostaglandin-Endoperoxide Synthases - genetics</topic><topic>Prostaglandin-Endoperoxide Synthases - metabolism</topic><topic>Reaction Time</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Rodents</topic><topic>Sex Characteristics</topic><topic>Spinal cord</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballou, L R</creatorcontrib><creatorcontrib>Botting, R M</creatorcontrib><creatorcontrib>Goorha, S</creatorcontrib><creatorcontrib>Zhang, J</creatorcontrib><creatorcontrib>Vane, J R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballou, L R</au><au>Botting, R M</au><au>Goorha, S</au><au>Zhang, J</au><au>Vane, J R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nociception in Cyclooxygenase Isozyme-Deficient Mice</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-08-29</date><risdate>2000</risdate><volume>97</volume><issue>18</issue><spage>10272</spage><epage>10276</epage><pages>10272-10276</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Prostaglandins formed by cyclooxygenase-1 (COX-1) or COX-2 produce hyperalgesia in sensory nerve endings. To assess the relative roles of the two enzymes in pain processing, we compared responses of COX-1- or COX-2-deficient homozygous and heterozygous mice with wild-type controls in the hot plate and stretching tests for analgesia. Preliminary observational studies determined that there were no differences in gross parameters of behavior between the different groups. Surprisingly, on the hot plate (55 degrees C), the COX-1-deficient heterozygous groups showed less nociception, because mean reaction time was longer than that for controls. All other groups showed similar reaction times. In the stretching test, there was less nociception in COX-1-null and COX-1-deficient heterozygotes and also, unexpectedly, in female COX-2-deficient heterozygotes, as shown by a decreased number of writhes. Measurements of mRNA levels by reverse transcription-PCR demonstrated a compensatory increase of COX-1 mRNA in spinal cords of COX-2-null mice but no increase in COX-2 mRNA in spinal cords of COX-1-null animals. Thus, compensation for the absence of COX-1 may not involve increased expression of COX-2, whereas up-regulation of COX-1 in the spinal cord may compensate for the absence of COX-2. The longer reaction times on the hot plate of COX-1-deficient heterozygotes are difficult to explain, because nonsteroid anti-inflammatory drugs have no analgesic action in this test. Reduction in the number of writhes of the COX-1-null and COX-1-deficient heterozygotes may be due to low levels of COX-1 at the site of stimulation with acetic acid. Thus, prostaglandins made by COX-1 mainly are involved in pain transmission in the stretching test in both male and female mice, whereas those made by COX-2 also may play a role in the stretching response in female mice.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10954756</pmid><doi>10.1073/pnas.180319297</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-08, Vol.97 (18), p.10272-10276
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_10954756
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Analgesics
Animals
Behavior, Animal
Biochemistry
Biological Sciences
Crosses, Genetic
Cyclooxygenase 1
Cyclooxygenase 2
Cyclooxygenase inhibitors
Enzymes
Female
Female animals
Genetics
Heterozygotes
Homozygote
Hot Temperature
Isoenzymes - deficiency
Isoenzymes - genetics
Isoenzymes - metabolism
Male
Male animals
Membrane Proteins
Messenger RNA
Mice
Mice, Inbred C57BL
Mice, Inbred DBA
Mice, Knockout
Pain
Pain - genetics
Pain - physiopathology
Pharmacology
Prostaglandin-Endoperoxide Synthases - deficiency
Prostaglandin-Endoperoxide Synthases - genetics
Prostaglandin-Endoperoxide Synthases - metabolism
Reaction Time
Reverse Transcriptase Polymerase Chain Reaction
Rodents
Sex Characteristics
Spinal cord
title Nociception in Cyclooxygenase Isozyme-Deficient Mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nociception%20in%20Cyclooxygenase%20Isozyme-Deficient%20Mice&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ballou,%20L%20R&rft.date=2000-08-29&rft.volume=97&rft.issue=18&rft.spage=10272&rft.epage=10276&rft.pages=10272-10276&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.180319297&rft_dat=%3Cjstor_pubme%3E123349%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201383377&rft_id=info:pmid/10954756&rft_jstor_id=123349&rfr_iscdi=true