The Saccharomyces cerevisiae ubiquitin–proteasome system

Our studies of the yeast ubiquitin-proteasome pathway have uncovered a number of general principles that govern substrate selectivity and proteolysis in this complex system. Much of the work has focused on the destruction of a yeast transcription factor, MATα2. The α2 protein is polyubiquitinated an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series B. Biological sciences 1999-09, Vol.354 (1389), p.1513-1522
Hauptverfasser: Hochstrasser, M., Johnson, P. R., Arendt, C. S., Amerik, A. Y., Swaminathan, S., Swanson, R., Li, S., Laney, J., Pals-Rylaarsdam, R., Nowak, J., Connerly, P. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our studies of the yeast ubiquitin-proteasome pathway have uncovered a number of general principles that govern substrate selectivity and proteolysis in this complex system. Much of the work has focused on the destruction of a yeast transcription factor, MATα2. The α2 protein is polyubiquitinated and rapidly degraded in α-haploid cells. One pathway of proteolytic targeting, which depends on two distinct endoplasmic reticulum-localized ubiquitin-conjugating enzymes, recognizes the hydrophobic face of an amphipathic helix in α2. Interestingly, degradation of α2 is blocked in a/α-diploid cells by heterodimer formation between the α2 and a1 homeodomain proteins. The data suggest that degradation signals may overlap protein-protein interaction surfaces, allowing a straightforward steric mechanism for regulated degradation. Analysis of α2 degradation led to the identification of both 20S and 26S proteasome subunits, and several key features of proteasome assembly and active-site formation were subsequently uncovered. Finally, it has become clear that protein (poly)ubiquitination is highly dynamic in vivo, and our studies of yeast de-ubiquitinating enzymes illustrate how such enzymes can facilitate the proteolysis of diverse substrates.
ISSN:0962-8436
1471-2970
DOI:10.1098/rstb.1999.0495