Hot-Spot Mutants of P53 Core Domain Evince Characteristic Local Structural Changes

Most of the oncogenic mutations in the tumor suppressor p53 map to its DNA-binding (core) domain. It is thus a potential target in cancer therapy for rescue by drugs. To begin to understand how mutation inactivates p53 and hence to provide a structural basis for drug design, we have compared structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1999-07, Vol.96 (15), p.8438-8442
Hauptverfasser: Wong, Kam-Bo, DeDecker, Brian S., Stefan M. V. Freund, Proctor, Mark R., Bycroft, Mark, Fersht, Alan R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8442
container_issue 15
container_start_page 8438
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 96
creator Wong, Kam-Bo
DeDecker, Brian S.
Stefan M. V. Freund
Proctor, Mark R.
Bycroft, Mark
Fersht, Alan R.
description Most of the oncogenic mutations in the tumor suppressor p53 map to its DNA-binding (core) domain. It is thus a potential target in cancer therapy for rescue by drugs. To begin to understand how mutation inactivates p53 and hence to provide a structural basis for drug design, we have compared structures of wild-type and mutant p53 core domains in solution by NMR spectroscopy. Structural changes introduced by five hot-spot mutations (V143A, G245S, R248Q, R249S, and R273H) were monitored by chemical-shift changes. Only localized changes are observed for G245S, R248Q, R249S, and R273H, suggesting that the overall tertiary folds of these mutant proteins are similar to that of wild type. Structural changes in R273H are found mainly in the loop-sheet-helix motif and the loop L3 of the core domain. Mutations in L3 (G245S, R248Q, and R249S) introduce structural changes in the loop L2 and L3 as well as terminal residues of strands 4, 9, and 10. It is noteworthy that R248Q, which is often regarded as a contact mutant that affects only interactions with DNA, introduces structural changes as extensive as the other loop L3 mutations (G245S and R249S). These changes suggest that R248Q is also a structural mutant that perturbs the structure of loop L2-L3 regions of the p53 core domain. In contrast to other mutants, replacement of the core residue valine 143 to alanine causes chemical-shift changes in almost all residues in the β -sandwich and the DNA-binding surface. Long-range effects of V143S mutation may affect the specificity of DNA binding.
doi_str_mv 10.1073/pnas.96.15.8438
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_10411893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48504</jstor_id><sourcerecordid>48504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-6ca6755b6e6d42b130219484a6a74f1e6290e33aa468807656a420573e43b593</originalsourceid><addsrcrecordid>eNqFkc1rVDEUxYModqyuBRcSXOjqTW9evsGNTKsVRhTbfcikee0b3iTTJK_Y_948ZqyjCK4SOL9zuPcehF4SmBOQ9GQbbJ5rMSd8rhhVj9CMgCaNYBoeoxlAKxvFWnaEnuW8BgDNFTxFRwQYIUrTGfp-HktzsY0FfxmLDSXj2OFvnOJFTB6fxo3tAz6764PzeHFjk3XFpz6X3uFldHbAFyWNroypfqsern1-jp50dsj-xf49Rpcfzy4X583y66fPiw_LxnHFSyOcFZLzlfDiirUrQqElmilmhZWsI160Gjyl1jKhFEjBhWUtcEk9oyuu6TF6v4vdjquNv3I-lDqE2aZ-Y9O9ibY3fyqhvzHX8c4QySmr9rd7e4q3o8_FbPrs_DDY4OOYjdAaqJLyvyCRraSK8gq--QtcxzGFegLTAqGinn6CTnaQSzHn5LuHgQmYqVIzVWq0MISbqdLqeH245wG_67AC7_bA5Pwl_04w3TgMxf8oB1H_Jivwagesc4npgWCKA6M_AZLvvE8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201365805</pqid></control><display><type>article</type><title>Hot-Spot Mutants of P53 Core Domain Evince Characteristic Local Structural Changes</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wong, Kam-Bo ; DeDecker, Brian S. ; Stefan M. V. Freund ; Proctor, Mark R. ; Bycroft, Mark ; Fersht, Alan R.</creator><creatorcontrib>Wong, Kam-Bo ; DeDecker, Brian S. ; Stefan M. V. Freund ; Proctor, Mark R. ; Bycroft, Mark ; Fersht, Alan R.</creatorcontrib><description>Most of the oncogenic mutations in the tumor suppressor p53 map to its DNA-binding (core) domain. It is thus a potential target in cancer therapy for rescue by drugs. To begin to understand how mutation inactivates p53 and hence to provide a structural basis for drug design, we have compared structures of wild-type and mutant p53 core domains in solution by NMR spectroscopy. Structural changes introduced by five hot-spot mutations (V143A, G245S, R248Q, R249S, and R273H) were monitored by chemical-shift changes. Only localized changes are observed for G245S, R248Q, R249S, and R273H, suggesting that the overall tertiary folds of these mutant proteins are similar to that of wild type. Structural changes in R273H are found mainly in the loop-sheet-helix motif and the loop L3 of the core domain. Mutations in L3 (G245S, R248Q, and R249S) introduce structural changes in the loop L2 and L3 as well as terminal residues of strands 4, 9, and 10. It is noteworthy that R248Q, which is often regarded as a contact mutant that affects only interactions with DNA, introduces structural changes as extensive as the other loop L3 mutations (G245S and R249S). These changes suggest that R248Q is also a structural mutant that perturbs the structure of loop L2-L3 regions of the p53 core domain. In contrast to other mutants, replacement of the core residue valine 143 to alanine causes chemical-shift changes in almost all residues in the β -sandwich and the DNA-binding surface. Long-range effects of V143S mutation may affect the specificity of DNA binding.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.96.15.8438</identifier><identifier>PMID: 10411893</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amides ; Binding Sites ; Biochemistry ; Biological Sciences ; Cell growth ; Centrifugation ; Chemical equilibrium ; Crystal structure ; Deoxyribonucleic acid ; DNA ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; Genetic mutation ; Humans ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Mutation ; Mutation - genetics ; Neoplasms - therapy ; Pharmacology ; Phosphates ; Protein Structure, Secondary ; Proteins ; Sodium ; Spectroscopy ; Tumor Suppressor Protein p53 - chemistry ; Tumor Suppressor Protein p53 - genetics ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1999-07, Vol.96 (15), p.8438-8442</ispartof><rights>Copyright 1993-1999 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 20, 1999</rights><rights>Copyright © 1999, The National Academy of Sciences 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-6ca6755b6e6d42b130219484a6a74f1e6290e33aa468807656a420573e43b593</citedby><cites>FETCH-LOGICAL-c585t-6ca6755b6e6d42b130219484a6a74f1e6290e33aa468807656a420573e43b593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/96/15.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48504$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48504$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10411893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, Kam-Bo</creatorcontrib><creatorcontrib>DeDecker, Brian S.</creatorcontrib><creatorcontrib>Stefan M. V. Freund</creatorcontrib><creatorcontrib>Proctor, Mark R.</creatorcontrib><creatorcontrib>Bycroft, Mark</creatorcontrib><creatorcontrib>Fersht, Alan R.</creatorcontrib><title>Hot-Spot Mutants of P53 Core Domain Evince Characteristic Local Structural Changes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Most of the oncogenic mutations in the tumor suppressor p53 map to its DNA-binding (core) domain. It is thus a potential target in cancer therapy for rescue by drugs. To begin to understand how mutation inactivates p53 and hence to provide a structural basis for drug design, we have compared structures of wild-type and mutant p53 core domains in solution by NMR spectroscopy. Structural changes introduced by five hot-spot mutations (V143A, G245S, R248Q, R249S, and R273H) were monitored by chemical-shift changes. Only localized changes are observed for G245S, R248Q, R249S, and R273H, suggesting that the overall tertiary folds of these mutant proteins are similar to that of wild type. Structural changes in R273H are found mainly in the loop-sheet-helix motif and the loop L3 of the core domain. Mutations in L3 (G245S, R248Q, and R249S) introduce structural changes in the loop L2 and L3 as well as terminal residues of strands 4, 9, and 10. It is noteworthy that R248Q, which is often regarded as a contact mutant that affects only interactions with DNA, introduces structural changes as extensive as the other loop L3 mutations (G245S and R249S). These changes suggest that R248Q is also a structural mutant that perturbs the structure of loop L2-L3 regions of the p53 core domain. In contrast to other mutants, replacement of the core residue valine 143 to alanine causes chemical-shift changes in almost all residues in the β -sandwich and the DNA-binding surface. Long-range effects of V143S mutation may affect the specificity of DNA binding.</description><subject>Amides</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell growth</subject><subject>Centrifugation</subject><subject>Chemical equilibrium</subject><subject>Crystal structure</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Genetic mutation</subject><subject>Humans</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Neoplasms - therapy</subject><subject>Pharmacology</subject><subject>Phosphates</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Sodium</subject><subject>Spectroscopy</subject><subject>Tumor Suppressor Protein p53 - chemistry</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1rVDEUxYModqyuBRcSXOjqTW9evsGNTKsVRhTbfcikee0b3iTTJK_Y_948ZqyjCK4SOL9zuPcehF4SmBOQ9GQbbJ5rMSd8rhhVj9CMgCaNYBoeoxlAKxvFWnaEnuW8BgDNFTxFRwQYIUrTGfp-HktzsY0FfxmLDSXj2OFvnOJFTB6fxo3tAz6764PzeHFjk3XFpz6X3uFldHbAFyWNroypfqsern1-jp50dsj-xf49Rpcfzy4X583y66fPiw_LxnHFSyOcFZLzlfDiirUrQqElmilmhZWsI160Gjyl1jKhFEjBhWUtcEk9oyuu6TF6v4vdjquNv3I-lDqE2aZ-Y9O9ibY3fyqhvzHX8c4QySmr9rd7e4q3o8_FbPrs_DDY4OOYjdAaqJLyvyCRraSK8gq--QtcxzGFegLTAqGinn6CTnaQSzHn5LuHgQmYqVIzVWq0MISbqdLqeH245wG_67AC7_bA5Pwl_04w3TgMxf8oB1H_Jivwagesc4npgWCKA6M_AZLvvE8</recordid><startdate>19990720</startdate><enddate>19990720</enddate><creator>Wong, Kam-Bo</creator><creator>DeDecker, Brian S.</creator><creator>Stefan M. V. Freund</creator><creator>Proctor, Mark R.</creator><creator>Bycroft, Mark</creator><creator>Fersht, Alan R.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990720</creationdate><title>Hot-Spot Mutants of P53 Core Domain Evince Characteristic Local Structural Changes</title><author>Wong, Kam-Bo ; DeDecker, Brian S. ; Stefan M. V. Freund ; Proctor, Mark R. ; Bycroft, Mark ; Fersht, Alan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-6ca6755b6e6d42b130219484a6a74f1e6290e33aa468807656a420573e43b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Amides</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell growth</topic><topic>Centrifugation</topic><topic>Chemical equilibrium</topic><topic>Crystal structure</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Genetic mutation</topic><topic>Humans</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Neoplasms - therapy</topic><topic>Pharmacology</topic><topic>Phosphates</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Sodium</topic><topic>Spectroscopy</topic><topic>Tumor Suppressor Protein p53 - chemistry</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Kam-Bo</creatorcontrib><creatorcontrib>DeDecker, Brian S.</creatorcontrib><creatorcontrib>Stefan M. V. Freund</creatorcontrib><creatorcontrib>Proctor, Mark R.</creatorcontrib><creatorcontrib>Bycroft, Mark</creatorcontrib><creatorcontrib>Fersht, Alan R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Kam-Bo</au><au>DeDecker, Brian S.</au><au>Stefan M. V. Freund</au><au>Proctor, Mark R.</au><au>Bycroft, Mark</au><au>Fersht, Alan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot-Spot Mutants of P53 Core Domain Evince Characteristic Local Structural Changes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1999-07-20</date><risdate>1999</risdate><volume>96</volume><issue>15</issue><spage>8438</spage><epage>8442</epage><pages>8438-8442</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Most of the oncogenic mutations in the tumor suppressor p53 map to its DNA-binding (core) domain. It is thus a potential target in cancer therapy for rescue by drugs. To begin to understand how mutation inactivates p53 and hence to provide a structural basis for drug design, we have compared structures of wild-type and mutant p53 core domains in solution by NMR spectroscopy. Structural changes introduced by five hot-spot mutations (V143A, G245S, R248Q, R249S, and R273H) were monitored by chemical-shift changes. Only localized changes are observed for G245S, R248Q, R249S, and R273H, suggesting that the overall tertiary folds of these mutant proteins are similar to that of wild type. Structural changes in R273H are found mainly in the loop-sheet-helix motif and the loop L3 of the core domain. Mutations in L3 (G245S, R248Q, and R249S) introduce structural changes in the loop L2 and L3 as well as terminal residues of strands 4, 9, and 10. It is noteworthy that R248Q, which is often regarded as a contact mutant that affects only interactions with DNA, introduces structural changes as extensive as the other loop L3 mutations (G245S and R249S). These changes suggest that R248Q is also a structural mutant that perturbs the structure of loop L2-L3 regions of the p53 core domain. In contrast to other mutants, replacement of the core residue valine 143 to alanine causes chemical-shift changes in almost all residues in the β -sandwich and the DNA-binding surface. Long-range effects of V143S mutation may affect the specificity of DNA binding.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>10411893</pmid><doi>10.1073/pnas.96.15.8438</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1999-07, Vol.96 (15), p.8438-8442
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_10411893
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amides
Binding Sites
Biochemistry
Biological Sciences
Cell growth
Centrifugation
Chemical equilibrium
Crystal structure
Deoxyribonucleic acid
DNA
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
Genetic mutation
Humans
Magnetic Resonance Spectroscopy
Models, Molecular
Mutation
Mutation - genetics
Neoplasms - therapy
Pharmacology
Phosphates
Protein Structure, Secondary
Proteins
Sodium
Spectroscopy
Tumor Suppressor Protein p53 - chemistry
Tumor Suppressor Protein p53 - genetics
Tumors
title Hot-Spot Mutants of P53 Core Domain Evince Characteristic Local Structural Changes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot-Spot%20Mutants%20of%20P53%20Core%20Domain%20Evince%20Characteristic%20Local%20Structural%20Changes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wong,%20Kam-Bo&rft.date=1999-07-20&rft.volume=96&rft.issue=15&rft.spage=8438&rft.epage=8442&rft.pages=8438-8442&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.96.15.8438&rft_dat=%3Cjstor_pubme%3E48504%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201365805&rft_id=info:pmid/10411893&rft_jstor_id=48504&rfr_iscdi=true