Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil

Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH(4) production rate, a decrease in the steady-state H(2) p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 1999-06, Vol.65 (6), p.2341-2349
Hauptverfasser: Chin, K.J, Lukow, T, Conrad, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2349
container_issue 6
container_start_page 2341
container_title Applied and Environmental Microbiology
container_volume 65
creator Chin, K.J
Lukow, T
Conrad, R
description Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH(4) production rate, a decrease in the steady-state H(2) partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grossetakopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The
doi_str_mv 10.1128/aem.65.6.2341-2349.1999
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_10347011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14511579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645t-80b513372f88704d9e0a950de189f1ed70a68c2a757814aa9152638902cf46483</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhL9CAKm5Zxp-xpV6qavmQijhAz5br2BtXib3YCdB_X4dd0cKlkjXWeJ53rBm9VXWCYI0QFu-1HdecrfkaE4qaEuQaSSmfVCsEUjSMEP60WgFI2WBM4ah6kfMNAFDg4nl1hIDQFhBaVXnjnDVTHV092XFnk57mZOsY6jyl2fxJdOhqNwcz-fK8gL2tRzv1OsStDd7UOpleWz3UJo7jHPx0W_tQZOXE36WevLG183bo6hz98LJ65vSQ7avDfVxdfdh8v_jUXH79-Pni_LIxnLKpEXDNECEtdkK0QDtpQUsGnUVCOmS7FjQXBuuWtQJRrSVimBMhARtHORXkuDrb993N16PtjA1T0oPaJT_qdKui9urfSvC92safSiJCeZG_O8hT_DHbPKnRZ2OHQQcb56y4bCXIFj8KohZLiTg8DlKGEGtlAd_-B97EOYWyLIWBSVoaLuO1e8ikmHOy7u9kCNTiEnW--aI4U1wtLlmCVItLivL1w8U80O1tUYDTA6Cz0YNLOhif7znBGJKkYG_2WO-3_S-frNJ5VMWb978W5mTPOB2V3qbS5uobBkQASwK8bOUO0l7ahA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205947298</pqid></control><display><type>article</type><title>Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chin, K.J ; Lukow, T ; Conrad, R</creator><creatorcontrib>Chin, K.J ; Lukow, T ; Conrad, R</creatorcontrib><description>Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH(4) production rate, a decrease in the steady-state H(2) partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grossetakopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15 degrees C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.65.6.2341-2349.1999</identifier><identifier>PMID: 10347011</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>anaerobes ; Animal, plant and microbial ecology ; Archaea ; Archaea - classification ; Archaea - genetics ; Archaea - metabolism ; Biological and medical sciences ; Crenarchaeota ; DNA, Archaeal - genetics ; DNA, Ribosomal - genetics ; Ecosystem ; Euryarchaeota ; Fundamental and applied biological sciences. Psychology ; genbank/aj236452 ; genbank/aj236453 ; genbank/aj236454 ; genbank/aj236455 ; genbank/aj236456 ; genbank/aj236457 ; genbank/aj236458 ; genbank/aj236459 ; genbank/aj236460 ; genbank/aj236461 ; genbank/aj236462 ; genbank/aj236463 ; genbank/aj236464 ; genbank/aj236465 ; genbank/aj236466 ; genbank/aj236467 ; genbank/aj236468 ; genbank/aj236469 ; genbank/aj236470 ; genbank/aj236471 ; genbank/aj236472 ; genbank/aj236473 ; genbank/aj236474 ; genbank/aj236475 ; genbank/aj236476 ; genbank/aj236477 ; genbank/aj236478 ; genbank/aj236479 ; genbank/aj236480 ; genbank/aj236481 ; General Microbial Ecology ; Methane ; Methane - metabolism ; Methanosaetaceae ; Methanosarcinaceae ; Microbial ecology ; Molecular Sequence Data ; nucleotide sequences ; Oryza ; Phylogeny ; Polymerase Chain Reaction - methods ; Polymorphism, Restriction Fragment Length ; ribosomal DNA ; Rice ; rice soils ; RNA, Ribosomal, 16S - genetics ; Soil ; soil bacteria ; Soil Microbiology ; Soils ; Space life sciences ; Temperature</subject><ispartof>Applied and Environmental Microbiology, 1999-06, Vol.65 (6), p.2341-2349</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jun 1999</rights><rights>Copyright © 1999, American Society for Microbiology 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c645t-80b513372f88704d9e0a950de189f1ed70a68c2a757814aa9152638902cf46483</citedby><cites>FETCH-LOGICAL-c645t-80b513372f88704d9e0a950de189f1ed70a68c2a757814aa9152638902cf46483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC91346/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC91346/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,3190,3191,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1855193$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10347011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chin, K.J</creatorcontrib><creatorcontrib>Lukow, T</creatorcontrib><creatorcontrib>Conrad, R</creatorcontrib><title>Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH(4) production rate, a decrease in the steady-state H(2) partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grossetakopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15 degrees C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.</description><subject>anaerobes</subject><subject>Animal, plant and microbial ecology</subject><subject>Archaea</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - metabolism</subject><subject>Biological and medical sciences</subject><subject>Crenarchaeota</subject><subject>DNA, Archaeal - genetics</subject><subject>DNA, Ribosomal - genetics</subject><subject>Ecosystem</subject><subject>Euryarchaeota</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genbank/aj236452</subject><subject>genbank/aj236453</subject><subject>genbank/aj236454</subject><subject>genbank/aj236455</subject><subject>genbank/aj236456</subject><subject>genbank/aj236457</subject><subject>genbank/aj236458</subject><subject>genbank/aj236459</subject><subject>genbank/aj236460</subject><subject>genbank/aj236461</subject><subject>genbank/aj236462</subject><subject>genbank/aj236463</subject><subject>genbank/aj236464</subject><subject>genbank/aj236465</subject><subject>genbank/aj236466</subject><subject>genbank/aj236467</subject><subject>genbank/aj236468</subject><subject>genbank/aj236469</subject><subject>genbank/aj236470</subject><subject>genbank/aj236471</subject><subject>genbank/aj236472</subject><subject>genbank/aj236473</subject><subject>genbank/aj236474</subject><subject>genbank/aj236475</subject><subject>genbank/aj236476</subject><subject>genbank/aj236477</subject><subject>genbank/aj236478</subject><subject>genbank/aj236479</subject><subject>genbank/aj236480</subject><subject>genbank/aj236481</subject><subject>General Microbial Ecology</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Methanosaetaceae</subject><subject>Methanosarcinaceae</subject><subject>Microbial ecology</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequences</subject><subject>Oryza</subject><subject>Phylogeny</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Polymorphism, Restriction Fragment Length</subject><subject>ribosomal DNA</subject><subject>Rice</subject><subject>rice soils</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Soil</subject><subject>soil bacteria</subject><subject>Soil Microbiology</subject><subject>Soils</subject><subject>Space life sciences</subject><subject>Temperature</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEokvhL9CAKm5Zxp-xpV6qavmQijhAz5br2BtXib3YCdB_X4dd0cKlkjXWeJ53rBm9VXWCYI0QFu-1HdecrfkaE4qaEuQaSSmfVCsEUjSMEP60WgFI2WBM4ah6kfMNAFDg4nl1hIDQFhBaVXnjnDVTHV092XFnk57mZOsY6jyl2fxJdOhqNwcz-fK8gL2tRzv1OsStDd7UOpleWz3UJo7jHPx0W_tQZOXE36WevLG183bo6hz98LJ65vSQ7avDfVxdfdh8v_jUXH79-Pni_LIxnLKpEXDNECEtdkK0QDtpQUsGnUVCOmS7FjQXBuuWtQJRrSVimBMhARtHORXkuDrb993N16PtjA1T0oPaJT_qdKui9urfSvC92safSiJCeZG_O8hT_DHbPKnRZ2OHQQcb56y4bCXIFj8KohZLiTg8DlKGEGtlAd_-B97EOYWyLIWBSVoaLuO1e8ikmHOy7u9kCNTiEnW--aI4U1wtLlmCVItLivL1w8U80O1tUYDTA6Cz0YNLOhif7znBGJKkYG_2WO-3_S-frNJ5VMWb978W5mTPOB2V3qbS5uobBkQASwK8bOUO0l7ahA</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Chin, K.J</creator><creator>Lukow, T</creator><creator>Conrad, R</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990601</creationdate><title>Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil</title><author>Chin, K.J ; Lukow, T ; Conrad, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645t-80b513372f88704d9e0a950de189f1ed70a68c2a757814aa9152638902cf46483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>anaerobes</topic><topic>Animal, plant and microbial ecology</topic><topic>Archaea</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - metabolism</topic><topic>Biological and medical sciences</topic><topic>Crenarchaeota</topic><topic>DNA, Archaeal - genetics</topic><topic>DNA, Ribosomal - genetics</topic><topic>Ecosystem</topic><topic>Euryarchaeota</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genbank/aj236452</topic><topic>genbank/aj236453</topic><topic>genbank/aj236454</topic><topic>genbank/aj236455</topic><topic>genbank/aj236456</topic><topic>genbank/aj236457</topic><topic>genbank/aj236458</topic><topic>genbank/aj236459</topic><topic>genbank/aj236460</topic><topic>genbank/aj236461</topic><topic>genbank/aj236462</topic><topic>genbank/aj236463</topic><topic>genbank/aj236464</topic><topic>genbank/aj236465</topic><topic>genbank/aj236466</topic><topic>genbank/aj236467</topic><topic>genbank/aj236468</topic><topic>genbank/aj236469</topic><topic>genbank/aj236470</topic><topic>genbank/aj236471</topic><topic>genbank/aj236472</topic><topic>genbank/aj236473</topic><topic>genbank/aj236474</topic><topic>genbank/aj236475</topic><topic>genbank/aj236476</topic><topic>genbank/aj236477</topic><topic>genbank/aj236478</topic><topic>genbank/aj236479</topic><topic>genbank/aj236480</topic><topic>genbank/aj236481</topic><topic>General Microbial Ecology</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Methanosaetaceae</topic><topic>Methanosarcinaceae</topic><topic>Microbial ecology</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequences</topic><topic>Oryza</topic><topic>Phylogeny</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Polymorphism, Restriction Fragment Length</topic><topic>ribosomal DNA</topic><topic>Rice</topic><topic>rice soils</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Soil</topic><topic>soil bacteria</topic><topic>Soil Microbiology</topic><topic>Soils</topic><topic>Space life sciences</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chin, K.J</creatorcontrib><creatorcontrib>Lukow, T</creatorcontrib><creatorcontrib>Conrad, R</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chin, K.J</au><au>Lukow, T</au><au>Conrad, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1999-06-01</date><risdate>1999</risdate><volume>65</volume><issue>6</issue><spage>2341</spage><epage>2349</epage><pages>2341-2349</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH(4) production rate, a decrease in the steady-state H(2) partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grossetakopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15 degrees C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>10347011</pmid><doi>10.1128/aem.65.6.2341-2349.1999</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 1999-06, Vol.65 (6), p.2341-2349
issn 0099-2240
1098-5336
language eng
recordid cdi_pubmed_primary_10347011
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects anaerobes
Animal, plant and microbial ecology
Archaea
Archaea - classification
Archaea - genetics
Archaea - metabolism
Biological and medical sciences
Crenarchaeota
DNA, Archaeal - genetics
DNA, Ribosomal - genetics
Ecosystem
Euryarchaeota
Fundamental and applied biological sciences. Psychology
genbank/aj236452
genbank/aj236453
genbank/aj236454
genbank/aj236455
genbank/aj236456
genbank/aj236457
genbank/aj236458
genbank/aj236459
genbank/aj236460
genbank/aj236461
genbank/aj236462
genbank/aj236463
genbank/aj236464
genbank/aj236465
genbank/aj236466
genbank/aj236467
genbank/aj236468
genbank/aj236469
genbank/aj236470
genbank/aj236471
genbank/aj236472
genbank/aj236473
genbank/aj236474
genbank/aj236475
genbank/aj236476
genbank/aj236477
genbank/aj236478
genbank/aj236479
genbank/aj236480
genbank/aj236481
General Microbial Ecology
Methane
Methane - metabolism
Methanosaetaceae
Methanosarcinaceae
Microbial ecology
Molecular Sequence Data
nucleotide sequences
Oryza
Phylogeny
Polymerase Chain Reaction - methods
Polymorphism, Restriction Fragment Length
ribosomal DNA
Rice
rice soils
RNA, Ribosomal, 16S - genetics
Soil
soil bacteria
Soil Microbiology
Soils
Space life sciences
Temperature
title Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T11%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20temperature%20on%20structure%20and%20function%20of%20the%20methanogenic%20archaeal%20community%20in%20an%20anoxic%20rice%20field%20soil&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Chin,%20K.J&rft.date=1999-06-01&rft.volume=65&rft.issue=6&rft.spage=2341&rft.epage=2349&rft.pages=2341-2349&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.65.6.2341-2349.1999&rft_dat=%3Cproquest_pubme%3E14511579%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205947298&rft_id=info:pmid/10347011&rfr_iscdi=true