Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil
Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH(4) production rate, a decrease in the steady-state H(2) p...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 1999-06, Vol.65 (6), p.2341-2349 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2349 |
---|---|
container_issue | 6 |
container_start_page | 2341 |
container_title | Applied and Environmental Microbiology |
container_volume | 65 |
creator | Chin, K.J Lukow, T Conrad, R |
description | Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH(4) production rate, a decrease in the steady-state H(2) partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grossetakopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The |
doi_str_mv | 10.1128/aem.65.6.2341-2349.1999 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_10347011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>14511579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c645t-80b513372f88704d9e0a950de189f1ed70a68c2a757814aa9152638902cf46483</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhL9CAKm5Zxp-xpV6qavmQijhAz5br2BtXib3YCdB_X4dd0cKlkjXWeJ53rBm9VXWCYI0QFu-1HdecrfkaE4qaEuQaSSmfVCsEUjSMEP60WgFI2WBM4ah6kfMNAFDg4nl1hIDQFhBaVXnjnDVTHV092XFnk57mZOsY6jyl2fxJdOhqNwcz-fK8gL2tRzv1OsStDd7UOpleWz3UJo7jHPx0W_tQZOXE36WevLG183bo6hz98LJ65vSQ7avDfVxdfdh8v_jUXH79-Pni_LIxnLKpEXDNECEtdkK0QDtpQUsGnUVCOmS7FjQXBuuWtQJRrSVimBMhARtHORXkuDrb993N16PtjA1T0oPaJT_qdKui9urfSvC92safSiJCeZG_O8hT_DHbPKnRZ2OHQQcb56y4bCXIFj8KohZLiTg8DlKGEGtlAd_-B97EOYWyLIWBSVoaLuO1e8ikmHOy7u9kCNTiEnW--aI4U1wtLlmCVItLivL1w8U80O1tUYDTA6Cz0YNLOhif7znBGJKkYG_2WO-3_S-frNJ5VMWb978W5mTPOB2V3qbS5uobBkQASwK8bOUO0l7ahA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205947298</pqid></control><display><type>article</type><title>Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chin, K.J ; Lukow, T ; Conrad, R</creator><creatorcontrib>Chin, K.J ; Lukow, T ; Conrad, R</creatorcontrib><description>Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH(4) production rate, a decrease in the steady-state H(2) partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grossetakopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15 degrees C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.65.6.2341-2349.1999</identifier><identifier>PMID: 10347011</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>anaerobes ; Animal, plant and microbial ecology ; Archaea ; Archaea - classification ; Archaea - genetics ; Archaea - metabolism ; Biological and medical sciences ; Crenarchaeota ; DNA, Archaeal - genetics ; DNA, Ribosomal - genetics ; Ecosystem ; Euryarchaeota ; Fundamental and applied biological sciences. Psychology ; genbank/aj236452 ; genbank/aj236453 ; genbank/aj236454 ; genbank/aj236455 ; genbank/aj236456 ; genbank/aj236457 ; genbank/aj236458 ; genbank/aj236459 ; genbank/aj236460 ; genbank/aj236461 ; genbank/aj236462 ; genbank/aj236463 ; genbank/aj236464 ; genbank/aj236465 ; genbank/aj236466 ; genbank/aj236467 ; genbank/aj236468 ; genbank/aj236469 ; genbank/aj236470 ; genbank/aj236471 ; genbank/aj236472 ; genbank/aj236473 ; genbank/aj236474 ; genbank/aj236475 ; genbank/aj236476 ; genbank/aj236477 ; genbank/aj236478 ; genbank/aj236479 ; genbank/aj236480 ; genbank/aj236481 ; General Microbial Ecology ; Methane ; Methane - metabolism ; Methanosaetaceae ; Methanosarcinaceae ; Microbial ecology ; Molecular Sequence Data ; nucleotide sequences ; Oryza ; Phylogeny ; Polymerase Chain Reaction - methods ; Polymorphism, Restriction Fragment Length ; ribosomal DNA ; Rice ; rice soils ; RNA, Ribosomal, 16S - genetics ; Soil ; soil bacteria ; Soil Microbiology ; Soils ; Space life sciences ; Temperature</subject><ispartof>Applied and Environmental Microbiology, 1999-06, Vol.65 (6), p.2341-2349</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jun 1999</rights><rights>Copyright © 1999, American Society for Microbiology 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c645t-80b513372f88704d9e0a950de189f1ed70a68c2a757814aa9152638902cf46483</citedby><cites>FETCH-LOGICAL-c645t-80b513372f88704d9e0a950de189f1ed70a68c2a757814aa9152638902cf46483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC91346/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC91346/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,3190,3191,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1855193$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10347011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chin, K.J</creatorcontrib><creatorcontrib>Lukow, T</creatorcontrib><creatorcontrib>Conrad, R</creatorcontrib><title>Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH(4) production rate, a decrease in the steady-state H(2) partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grossetakopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15 degrees C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.</description><subject>anaerobes</subject><subject>Animal, plant and microbial ecology</subject><subject>Archaea</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - metabolism</subject><subject>Biological and medical sciences</subject><subject>Crenarchaeota</subject><subject>DNA, Archaeal - genetics</subject><subject>DNA, Ribosomal - genetics</subject><subject>Ecosystem</subject><subject>Euryarchaeota</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genbank/aj236452</subject><subject>genbank/aj236453</subject><subject>genbank/aj236454</subject><subject>genbank/aj236455</subject><subject>genbank/aj236456</subject><subject>genbank/aj236457</subject><subject>genbank/aj236458</subject><subject>genbank/aj236459</subject><subject>genbank/aj236460</subject><subject>genbank/aj236461</subject><subject>genbank/aj236462</subject><subject>genbank/aj236463</subject><subject>genbank/aj236464</subject><subject>genbank/aj236465</subject><subject>genbank/aj236466</subject><subject>genbank/aj236467</subject><subject>genbank/aj236468</subject><subject>genbank/aj236469</subject><subject>genbank/aj236470</subject><subject>genbank/aj236471</subject><subject>genbank/aj236472</subject><subject>genbank/aj236473</subject><subject>genbank/aj236474</subject><subject>genbank/aj236475</subject><subject>genbank/aj236476</subject><subject>genbank/aj236477</subject><subject>genbank/aj236478</subject><subject>genbank/aj236479</subject><subject>genbank/aj236480</subject><subject>genbank/aj236481</subject><subject>General Microbial Ecology</subject><subject>Methane</subject><subject>Methane - metabolism</subject><subject>Methanosaetaceae</subject><subject>Methanosarcinaceae</subject><subject>Microbial ecology</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequences</subject><subject>Oryza</subject><subject>Phylogeny</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Polymorphism, Restriction Fragment Length</subject><subject>ribosomal DNA</subject><subject>Rice</subject><subject>rice soils</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Soil</subject><subject>soil bacteria</subject><subject>Soil Microbiology</subject><subject>Soils</subject><subject>Space life sciences</subject><subject>Temperature</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEokvhL9CAKm5Zxp-xpV6qavmQijhAz5br2BtXib3YCdB_X4dd0cKlkjXWeJ53rBm9VXWCYI0QFu-1HdecrfkaE4qaEuQaSSmfVCsEUjSMEP60WgFI2WBM4ah6kfMNAFDg4nl1hIDQFhBaVXnjnDVTHV092XFnk57mZOsY6jyl2fxJdOhqNwcz-fK8gL2tRzv1OsStDd7UOpleWz3UJo7jHPx0W_tQZOXE36WevLG183bo6hz98LJ65vSQ7avDfVxdfdh8v_jUXH79-Pni_LIxnLKpEXDNECEtdkK0QDtpQUsGnUVCOmS7FjQXBuuWtQJRrSVimBMhARtHORXkuDrb993N16PtjA1T0oPaJT_qdKui9urfSvC92safSiJCeZG_O8hT_DHbPKnRZ2OHQQcb56y4bCXIFj8KohZLiTg8DlKGEGtlAd_-B97EOYWyLIWBSVoaLuO1e8ikmHOy7u9kCNTiEnW--aI4U1wtLlmCVItLivL1w8U80O1tUYDTA6Cz0YNLOhif7znBGJKkYG_2WO-3_S-frNJ5VMWb978W5mTPOB2V3qbS5uobBkQASwK8bOUO0l7ahA</recordid><startdate>19990601</startdate><enddate>19990601</enddate><creator>Chin, K.J</creator><creator>Lukow, T</creator><creator>Conrad, R</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990601</creationdate><title>Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil</title><author>Chin, K.J ; Lukow, T ; Conrad, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c645t-80b513372f88704d9e0a950de189f1ed70a68c2a757814aa9152638902cf46483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>anaerobes</topic><topic>Animal, plant and microbial ecology</topic><topic>Archaea</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - metabolism</topic><topic>Biological and medical sciences</topic><topic>Crenarchaeota</topic><topic>DNA, Archaeal - genetics</topic><topic>DNA, Ribosomal - genetics</topic><topic>Ecosystem</topic><topic>Euryarchaeota</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genbank/aj236452</topic><topic>genbank/aj236453</topic><topic>genbank/aj236454</topic><topic>genbank/aj236455</topic><topic>genbank/aj236456</topic><topic>genbank/aj236457</topic><topic>genbank/aj236458</topic><topic>genbank/aj236459</topic><topic>genbank/aj236460</topic><topic>genbank/aj236461</topic><topic>genbank/aj236462</topic><topic>genbank/aj236463</topic><topic>genbank/aj236464</topic><topic>genbank/aj236465</topic><topic>genbank/aj236466</topic><topic>genbank/aj236467</topic><topic>genbank/aj236468</topic><topic>genbank/aj236469</topic><topic>genbank/aj236470</topic><topic>genbank/aj236471</topic><topic>genbank/aj236472</topic><topic>genbank/aj236473</topic><topic>genbank/aj236474</topic><topic>genbank/aj236475</topic><topic>genbank/aj236476</topic><topic>genbank/aj236477</topic><topic>genbank/aj236478</topic><topic>genbank/aj236479</topic><topic>genbank/aj236480</topic><topic>genbank/aj236481</topic><topic>General Microbial Ecology</topic><topic>Methane</topic><topic>Methane - metabolism</topic><topic>Methanosaetaceae</topic><topic>Methanosarcinaceae</topic><topic>Microbial ecology</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequences</topic><topic>Oryza</topic><topic>Phylogeny</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Polymorphism, Restriction Fragment Length</topic><topic>ribosomal DNA</topic><topic>Rice</topic><topic>rice soils</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Soil</topic><topic>soil bacteria</topic><topic>Soil Microbiology</topic><topic>Soils</topic><topic>Space life sciences</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chin, K.J</creatorcontrib><creatorcontrib>Lukow, T</creatorcontrib><creatorcontrib>Conrad, R</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chin, K.J</au><au>Lukow, T</au><au>Conrad, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1999-06-01</date><risdate>1999</risdate><volume>65</volume><issue>6</issue><spage>2341</spage><epage>2349</epage><pages>2341-2349</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Soil temperatures in Italian rice fields typically range between about 15 and 30 degrees C. A change in the incubation temperature of anoxic methanogenic soil slurry from 30 degrees C to 15 degrees C typically resulted in a decrease in the CH(4) production rate, a decrease in the steady-state H(2) partial pressure, and a transient accumulation of acetate. Previous experiments have shown that these changes were due to an alteration of the carbon and electron flow in the methanogenic degradation pathway of organic matter caused by the temperature shift (K. J. Chin and R. Conrad, FEMS Microbiol. Ecol. 18:85-102, 1995). To investigate how temperature affects the structure of the methanogenic archaeal community, total DNA was extracted from soil slurries incubated at 30 and 15 degrees C. The archaeal small-subunit (SSU) rRNA-encoding genes (rDNA) of these environmental DNA samples were amplified by PCR with an archaeal-specific primer system and used for the generation of clone libraries. Representative rDNA clones (n = 90) were characterized by terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis. T-RFLP analysis produced for the clones terminally labeled fragments with a characteristic length of mostly 185, 284, or 392 bp. Sequence analysis allowed determination of the phylogenetic affiliation of the individual clones with their characteristic T-RFLP fragment lengths and showed that the archaeal community of the anoxic rice soil slurry was dominated by members of the families Methanosarcinaceae (185 bp) and Methanosaetaceae (284 bp), the kingdom Crenarchaeota (185 or 284 bp), and a novel, deeply branching lineage of the (probably methanogenic) kingdom Euryarchaeota (392 bp) that has recently been detected on rice roots (R. Grossetakopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). The structure of the archaeal community changed when the temperature was shifted from 30 degrees C to 15 degrees C. Before the temperature shift, the clones (n = 30) retrieved from the community were dominated by Crenarchaeota (70%), "novel Euryarchaeota" (23%), and Methanosarcinacaeae (7%). Further incubation at 30 degrees C (n = 30 clones) resulted in a relative increase in members of the Methanosarcinaceae (77%), whereas further incubation at 15 degrees C (n = 30 clones) resulted in a much more diverse community consisting of 33% Methanosarcinaceae, 23% Crenarchaeota, 20% Methanosaetaceae, and 17% novel Euryarchaeota. The appearance of Methanosaetaceae at 15 degrees C was conspicuous. These results demonstrate that the structure of the archaeal community in anoxic rice field soil changed with time and incubation temperature.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>10347011</pmid><doi>10.1128/aem.65.6.2341-2349.1999</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 1999-06, Vol.65 (6), p.2341-2349 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_pubmed_primary_10347011 |
source | American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | anaerobes Animal, plant and microbial ecology Archaea Archaea - classification Archaea - genetics Archaea - metabolism Biological and medical sciences Crenarchaeota DNA, Archaeal - genetics DNA, Ribosomal - genetics Ecosystem Euryarchaeota Fundamental and applied biological sciences. Psychology genbank/aj236452 genbank/aj236453 genbank/aj236454 genbank/aj236455 genbank/aj236456 genbank/aj236457 genbank/aj236458 genbank/aj236459 genbank/aj236460 genbank/aj236461 genbank/aj236462 genbank/aj236463 genbank/aj236464 genbank/aj236465 genbank/aj236466 genbank/aj236467 genbank/aj236468 genbank/aj236469 genbank/aj236470 genbank/aj236471 genbank/aj236472 genbank/aj236473 genbank/aj236474 genbank/aj236475 genbank/aj236476 genbank/aj236477 genbank/aj236478 genbank/aj236479 genbank/aj236480 genbank/aj236481 General Microbial Ecology Methane Methane - metabolism Methanosaetaceae Methanosarcinaceae Microbial ecology Molecular Sequence Data nucleotide sequences Oryza Phylogeny Polymerase Chain Reaction - methods Polymorphism, Restriction Fragment Length ribosomal DNA Rice rice soils RNA, Ribosomal, 16S - genetics Soil soil bacteria Soil Microbiology Soils Space life sciences Temperature |
title | Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T11%3A17%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20temperature%20on%20structure%20and%20function%20of%20the%20methanogenic%20archaeal%20community%20in%20an%20anoxic%20rice%20field%20soil&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Chin,%20K.J&rft.date=1999-06-01&rft.volume=65&rft.issue=6&rft.spage=2341&rft.epage=2349&rft.pages=2341-2349&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.65.6.2341-2349.1999&rft_dat=%3Cproquest_pubme%3E14511579%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205947298&rft_id=info:pmid/10347011&rfr_iscdi=true |