Predicting Epistasis from Mathematical Models

Classically, epistasis is either computed exactly by Walsh coefficients or estimated by sampling. Exact computation is usually of theoretical interest since the computation typically grows exponentially with the number of bits in the domain. Given an evaluation function, epistasis also can be estima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary computation 1999-03, Vol.7 (1), p.69-101
Hauptverfasser: Heckendorn, Robert B, Whitley, Darrell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 1
container_start_page 69
container_title Evolutionary computation
container_volume 7
creator Heckendorn, Robert B
Whitley, Darrell
description Classically, epistasis is either computed exactly by Walsh coefficients or estimated by sampling. Exact computation is usually of theoretical interest since the computation typically grows exponentially with the number of bits in the domain. Given an evaluation function, epistasis also can be estimated by sampling. However this approach gives us little insight into the origin of the epistasis and is prone to sampling error. This paper presents theorems establishing the bounds of epistasis for problems that can be stated as mathematical expressions. This leads to substantial computational savings for bounding the difficulty of a problem. Furthermore, working with these theorems in a mathematical context, one can gain insight into the mathematical origins of epistasis and how a problem's epistasis might be reduced. We present several new measures for epistasis and give empirical evidence and examples to demonstrate the application of the theorems. In particular, we show that some functions display “parity” such that by picking a well-defined representation, all Walsh coefficients of either odd or even index become zero, thereby reducing the nonlinearity of the function.
doi_str_mv 10.1162/evco.1999.7.1.69
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_10199996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69687921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-875e5d9824f01ccb9aa9256256974519289414e41625b9bbbb016b8da9f6c08b3</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRCIlsLOhDoxkXDnJE5uRFX5kFrBALPlOA64SpoSp5Xg1-OQDgzldNLd8N67e4-xS4QQUfBbs9NNiEQUpiGGgo7YGJMIAoogPvY7iCgQiYARO3NuBYARBzxlI4SeRGLMgpfWFFZ3dv0-nW-s65Szblq2TT1dqu7D1KqzWlXTZVOYyp2zk1JVzlzs54S93c9fZ4_B4vnhaXa3CHREvAuyNDFJQRmPS0Ctc1KKeCJ8UxonSDyjGGMTewtJTrkvQJFnhaJSaMjyaMKuB91N23xujetkbZ02VaXWptk6KUhkKXH0QBiAum2ca00pN62tVfslEWQfkewjkr1bmUr0RE-52mtv89oUfwhDJh4wGwC17eSq2bZrb_VXZ5dalBFgFqWSA0d_QUImv-3m0JmbAyr_fvUDdlqFSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69687921</pqid></control><display><type>article</type><title>Predicting Epistasis from Mathematical Models</title><source>MEDLINE</source><source>ACM Digital Library</source><source>MIT Press Journals</source><creator>Heckendorn, Robert B ; Whitley, Darrell</creator><creatorcontrib>Heckendorn, Robert B ; Whitley, Darrell</creatorcontrib><description>Classically, epistasis is either computed exactly by Walsh coefficients or estimated by sampling. Exact computation is usually of theoretical interest since the computation typically grows exponentially with the number of bits in the domain. Given an evaluation function, epistasis also can be estimated by sampling. However this approach gives us little insight into the origin of the epistasis and is prone to sampling error. This paper presents theorems establishing the bounds of epistasis for problems that can be stated as mathematical expressions. This leads to substantial computational savings for bounding the difficulty of a problem. Furthermore, working with these theorems in a mathematical context, one can gain insight into the mathematical origins of epistasis and how a problem's epistasis might be reduced. We present several new measures for epistasis and give empirical evidence and examples to demonstrate the application of the theorems. In particular, we show that some functions display “parity” such that by picking a well-defined representation, all Walsh coefficients of either odd or even index become zero, thereby reducing the nonlinearity of the function.</description><identifier>ISSN: 1063-6560</identifier><identifier>EISSN: 1530-9304</identifier><identifier>DOI: 10.1162/evco.1999.7.1.69</identifier><identifier>PMID: 10199996</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; epistasis ; Epistasis, Genetic ; Even order functions ; function order ; GA-hardness ; genetic algorithm ; Mathematics ; Models, Genetic ; odd order functions ; parameter decoding ; predicting complexity ; Walsh analysis ; Walsh functions ; Walsh sums</subject><ispartof>Evolutionary computation, 1999-03, Vol.7 (1), p.69-101</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-875e5d9824f01ccb9aa9256256974519289414e41625b9bbbb016b8da9f6c08b3</citedby><cites>FETCH-LOGICAL-c392t-875e5d9824f01ccb9aa9256256974519289414e41625b9bbbb016b8da9f6c08b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/evco/article/doi/10.1162/evco.1999.7.1.69$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,54013,54014</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10199996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Heckendorn, Robert B</creatorcontrib><creatorcontrib>Whitley, Darrell</creatorcontrib><title>Predicting Epistasis from Mathematical Models</title><title>Evolutionary computation</title><addtitle>Evol Comput</addtitle><description>Classically, epistasis is either computed exactly by Walsh coefficients or estimated by sampling. Exact computation is usually of theoretical interest since the computation typically grows exponentially with the number of bits in the domain. Given an evaluation function, epistasis also can be estimated by sampling. However this approach gives us little insight into the origin of the epistasis and is prone to sampling error. This paper presents theorems establishing the bounds of epistasis for problems that can be stated as mathematical expressions. This leads to substantial computational savings for bounding the difficulty of a problem. Furthermore, working with these theorems in a mathematical context, one can gain insight into the mathematical origins of epistasis and how a problem's epistasis might be reduced. We present several new measures for epistasis and give empirical evidence and examples to demonstrate the application of the theorems. In particular, we show that some functions display “parity” such that by picking a well-defined representation, all Walsh coefficients of either odd or even index become zero, thereby reducing the nonlinearity of the function.</description><subject>Algorithms</subject><subject>epistasis</subject><subject>Epistasis, Genetic</subject><subject>Even order functions</subject><subject>function order</subject><subject>GA-hardness</subject><subject>genetic algorithm</subject><subject>Mathematics</subject><subject>Models, Genetic</subject><subject>odd order functions</subject><subject>parameter decoding</subject><subject>predicting complexity</subject><subject>Walsh analysis</subject><subject>Walsh functions</subject><subject>Walsh sums</subject><issn>1063-6560</issn><issn>1530-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UD1PwzAQtRCIlsLOhDoxkXDnJE5uRFX5kFrBALPlOA64SpoSp5Xg1-OQDgzldNLd8N67e4-xS4QQUfBbs9NNiEQUpiGGgo7YGJMIAoogPvY7iCgQiYARO3NuBYARBzxlI4SeRGLMgpfWFFZ3dv0-nW-s65Szblq2TT1dqu7D1KqzWlXTZVOYyp2zk1JVzlzs54S93c9fZ4_B4vnhaXa3CHREvAuyNDFJQRmPS0Ctc1KKeCJ8UxonSDyjGGMTewtJTrkvQJFnhaJSaMjyaMKuB91N23xujetkbZ02VaXWptk6KUhkKXH0QBiAum2ca00pN62tVfslEWQfkewjkr1bmUr0RE-52mtv89oUfwhDJh4wGwC17eSq2bZrb_VXZ5dalBFgFqWSA0d_QUImv-3m0JmbAyr_fvUDdlqFSg</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Heckendorn, Robert B</creator><creator>Whitley, Darrell</creator><general>MIT Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990301</creationdate><title>Predicting Epistasis from Mathematical Models</title><author>Heckendorn, Robert B ; Whitley, Darrell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-875e5d9824f01ccb9aa9256256974519289414e41625b9bbbb016b8da9f6c08b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>epistasis</topic><topic>Epistasis, Genetic</topic><topic>Even order functions</topic><topic>function order</topic><topic>GA-hardness</topic><topic>genetic algorithm</topic><topic>Mathematics</topic><topic>Models, Genetic</topic><topic>odd order functions</topic><topic>parameter decoding</topic><topic>predicting complexity</topic><topic>Walsh analysis</topic><topic>Walsh functions</topic><topic>Walsh sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heckendorn, Robert B</creatorcontrib><creatorcontrib>Whitley, Darrell</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heckendorn, Robert B</au><au>Whitley, Darrell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Epistasis from Mathematical Models</atitle><jtitle>Evolutionary computation</jtitle><addtitle>Evol Comput</addtitle><date>1999-03-01</date><risdate>1999</risdate><volume>7</volume><issue>1</issue><spage>69</spage><epage>101</epage><pages>69-101</pages><issn>1063-6560</issn><eissn>1530-9304</eissn><abstract>Classically, epistasis is either computed exactly by Walsh coefficients or estimated by sampling. Exact computation is usually of theoretical interest since the computation typically grows exponentially with the number of bits in the domain. Given an evaluation function, epistasis also can be estimated by sampling. However this approach gives us little insight into the origin of the epistasis and is prone to sampling error. This paper presents theorems establishing the bounds of epistasis for problems that can be stated as mathematical expressions. This leads to substantial computational savings for bounding the difficulty of a problem. Furthermore, working with these theorems in a mathematical context, one can gain insight into the mathematical origins of epistasis and how a problem's epistasis might be reduced. We present several new measures for epistasis and give empirical evidence and examples to demonstrate the application of the theorems. In particular, we show that some functions display “parity” such that by picking a well-defined representation, all Walsh coefficients of either odd or even index become zero, thereby reducing the nonlinearity of the function.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>10199996</pmid><doi>10.1162/evco.1999.7.1.69</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-6560
ispartof Evolutionary computation, 1999-03, Vol.7 (1), p.69-101
issn 1063-6560
1530-9304
language eng
recordid cdi_pubmed_primary_10199996
source MEDLINE; ACM Digital Library; MIT Press Journals
subjects Algorithms
epistasis
Epistasis, Genetic
Even order functions
function order
GA-hardness
genetic algorithm
Mathematics
Models, Genetic
odd order functions
parameter decoding
predicting complexity
Walsh analysis
Walsh functions
Walsh sums
title Predicting Epistasis from Mathematical Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A10%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Epistasis%20from%20Mathematical%20Models&rft.jtitle=Evolutionary%20computation&rft.au=Heckendorn,%20Robert%20B&rft.date=1999-03-01&rft.volume=7&rft.issue=1&rft.spage=69&rft.epage=101&rft.pages=69-101&rft.issn=1063-6560&rft.eissn=1530-9304&rft_id=info:doi/10.1162/evco.1999.7.1.69&rft_dat=%3Cproquest_pubme%3E69687921%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69687921&rft_id=info:pmid/10199996&rfr_iscdi=true