New image-processing algorithm for measurement of bubble size distribution from flotation froth images
Research and experience have demonstrated that the operating conditions of the flotation process are reflected in the froth’s appearance. Despite recent advances in image analysis and several algorithms developed for froth flotation, there still is not a comprehensive algorithm to accurately determi...
Gespeichert in:
Veröffentlicht in: | Minerals & Metallurgical Processing 2011-08, Vol.28 (3), p.146-150 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | 3 |
container_start_page | 146 |
container_title | Minerals & Metallurgical Processing |
container_volume | 28 |
creator | Mehrshad, N. Massinaei, M. |
description | Research and experience have demonstrated that the operating conditions of the flotation process are reflected in the froth’s appearance. Despite recent advances in image analysis and several algorithms developed for froth flotation, there still is not a comprehensive algorithm to accurately determine bubble features from actual froth images. Being able to accurately and automatically measure bubble size distribution is an important requirement for optimization and control of the flotation process. Segmentation is one of the most effective approaches for accurately determining the bubble size distribution. In the present study, a new bubble segmentation algorithm, which utilizes an adaptive marker-based watershed transform, is proposed to measure the bubble size distribution from froth images. The developed algorithm is validated using some industrial scale froth images from flotation cells at different duties. |
doi_str_mv | 10.1007/BF03402247 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_reports_884038442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427795101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-390a404de586177214cbfd3103bf3e5decb029a278cbc8bb3a05fc9c3e7595e83</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EElXphi8wW1DAr9TJEioKSBVsYB3ZzjgNSuJiO0Lw9TUKjw2rmdGcuZp7ETql5JISIq9u1oQLwpiQB2jGciYyLiQ5_O2X7BgtQmg1EYxSIgWfIfsI77jtVQPZzjsDaT00WHWN823c9tg6j3tQYfTQwxCxs1iPWneAQ_sJuG5D9K0eY-sGbL1LB52L6meM20k7nKAjq7oAi-86Ry_r2-fVfbZ5untYXW8yw0oeM14SJYioIS-WVEpGhdG25pRwbTnkNRhNWKmYLIw2hdZckdya0nCQeZlDwefobNJNZt5GCLHysHM-hqooBOGFECwx5xNjvAvBg612Pn3pPypKqq8gq78gE3wxwSFBQwO-enWjH5KH_-g9SkJ0UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884038442</pqid></control><display><type>article</type><title>New image-processing algorithm for measurement of bubble size distribution from flotation froth images</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mehrshad, N. ; Massinaei, M.</creator><creatorcontrib>Mehrshad, N. ; Massinaei, M.</creatorcontrib><description>Research and experience have demonstrated that the operating conditions of the flotation process are reflected in the froth’s appearance. Despite recent advances in image analysis and several algorithms developed for froth flotation, there still is not a comprehensive algorithm to accurately determine bubble features from actual froth images. Being able to accurately and automatically measure bubble size distribution is an important requirement for optimization and control of the flotation process. Segmentation is one of the most effective approaches for accurately determining the bubble size distribution. In the present study, a new bubble segmentation algorithm, which utilizes an adaptive marker-based watershed transform, is proposed to measure the bubble size distribution from froth images. The developed algorithm is validated using some industrial scale froth images from flotation cells at different duties.</description><identifier>ISSN: 2524-3462</identifier><identifier>EISSN: 2524-3470</identifier><identifier>DOI: 10.1007/BF03402247</identifier><identifier>CODEN: MMPRES</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Bubbles ; Dams ; Engineering ; Floods ; Image processing systems ; Materials Engineering ; Measurement techniques ; Measures of central tendency ; Metallic Materials ; Mineral processing ; Mineral Resources ; Morphology ; Topography ; Vision systems ; Watersheds</subject><ispartof>Minerals & Metallurgical Processing, 2011-08, Vol.28 (3), p.146-150</ispartof><rights>The Society for Mining, Metallurgy & Exploration 2011</rights><rights>Copyright Society for Mining, Metallurgy, and Exploration, Inc. Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-390a404de586177214cbfd3103bf3e5decb029a278cbc8bb3a05fc9c3e7595e83</citedby><cites>FETCH-LOGICAL-c293t-390a404de586177214cbfd3103bf3e5decb029a278cbc8bb3a05fc9c3e7595e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BF03402247$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BF03402247$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>312,314,780,784,791,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Mehrshad, N.</creatorcontrib><creatorcontrib>Massinaei, M.</creatorcontrib><title>New image-processing algorithm for measurement of bubble size distribution from flotation froth images</title><title>Minerals & Metallurgical Processing</title><addtitle>Mining, Metallurgy & Exploration</addtitle><description>Research and experience have demonstrated that the operating conditions of the flotation process are reflected in the froth’s appearance. Despite recent advances in image analysis and several algorithms developed for froth flotation, there still is not a comprehensive algorithm to accurately determine bubble features from actual froth images. Being able to accurately and automatically measure bubble size distribution is an important requirement for optimization and control of the flotation process. Segmentation is one of the most effective approaches for accurately determining the bubble size distribution. In the present study, a new bubble segmentation algorithm, which utilizes an adaptive marker-based watershed transform, is proposed to measure the bubble size distribution from froth images. The developed algorithm is validated using some industrial scale froth images from flotation cells at different duties.</description><subject>Algorithms</subject><subject>Bubbles</subject><subject>Dams</subject><subject>Engineering</subject><subject>Floods</subject><subject>Image processing systems</subject><subject>Materials Engineering</subject><subject>Measurement techniques</subject><subject>Measures of central tendency</subject><subject>Metallic Materials</subject><subject>Mineral processing</subject><subject>Mineral Resources</subject><subject>Morphology</subject><subject>Topography</subject><subject>Vision systems</subject><subject>Watersheds</subject><issn>2524-3462</issn><issn>2524-3470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkMtOwzAQRS0EElXphi8wW1DAr9TJEioKSBVsYB3ZzjgNSuJiO0Lw9TUKjw2rmdGcuZp7ETql5JISIq9u1oQLwpiQB2jGciYyLiQ5_O2X7BgtQmg1EYxSIgWfIfsI77jtVQPZzjsDaT00WHWN823c9tg6j3tQYfTQwxCxs1iPWneAQ_sJuG5D9K0eY-sGbL1LB52L6meM20k7nKAjq7oAi-86Ry_r2-fVfbZ5untYXW8yw0oeM14SJYioIS-WVEpGhdG25pRwbTnkNRhNWKmYLIw2hdZckdya0nCQeZlDwefobNJNZt5GCLHysHM-hqooBOGFECwx5xNjvAvBg612Pn3pPypKqq8gq78gE3wxwSFBQwO-enWjH5KH_-g9SkJ0UQ</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Mehrshad, N.</creator><creator>Massinaei, M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7RQ</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20110801</creationdate><title>New image-processing algorithm for measurement of bubble size distribution from flotation froth images</title><author>Mehrshad, N. ; Massinaei, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-390a404de586177214cbfd3103bf3e5decb029a278cbc8bb3a05fc9c3e7595e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Bubbles</topic><topic>Dams</topic><topic>Engineering</topic><topic>Floods</topic><topic>Image processing systems</topic><topic>Materials Engineering</topic><topic>Measurement techniques</topic><topic>Measures of central tendency</topic><topic>Metallic Materials</topic><topic>Mineral processing</topic><topic>Mineral Resources</topic><topic>Morphology</topic><topic>Topography</topic><topic>Vision systems</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehrshad, N.</creatorcontrib><creatorcontrib>Massinaei, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade & Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Minerals & Metallurgical Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehrshad, N.</au><au>Massinaei, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New image-processing algorithm for measurement of bubble size distribution from flotation froth images</atitle><jtitle>Minerals & Metallurgical Processing</jtitle><stitle>Mining, Metallurgy & Exploration</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>28</volume><issue>3</issue><spage>146</spage><epage>150</epage><pages>146-150</pages><issn>2524-3462</issn><eissn>2524-3470</eissn><coden>MMPRES</coden><abstract>Research and experience have demonstrated that the operating conditions of the flotation process are reflected in the froth’s appearance. Despite recent advances in image analysis and several algorithms developed for froth flotation, there still is not a comprehensive algorithm to accurately determine bubble features from actual froth images. Being able to accurately and automatically measure bubble size distribution is an important requirement for optimization and control of the flotation process. Segmentation is one of the most effective approaches for accurately determining the bubble size distribution. In the present study, a new bubble segmentation algorithm, which utilizes an adaptive marker-based watershed transform, is proposed to measure the bubble size distribution from froth images. The developed algorithm is validated using some industrial scale froth images from flotation cells at different duties.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/BF03402247</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2524-3462 |
ispartof | Minerals & Metallurgical Processing, 2011-08, Vol.28 (3), p.146-150 |
issn | 2524-3462 2524-3470 |
language | eng |
recordid | cdi_proquest_reports_884038442 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Bubbles Dams Engineering Floods Image processing systems Materials Engineering Measurement techniques Measures of central tendency Metallic Materials Mineral processing Mineral Resources Morphology Topography Vision systems Watersheds |
title | New image-processing algorithm for measurement of bubble size distribution from flotation froth images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20image-processing%20algorithm%20for%20measurement%20of%20bubble%20size%20distribution%20from%20flotation%20froth%20images&rft.jtitle=Minerals%20&%20Metallurgical%20Processing&rft.au=Mehrshad,%20N.&rft.date=2011-08-01&rft.volume=28&rft.issue=3&rft.spage=146&rft.epage=150&rft.pages=146-150&rft.issn=2524-3462&rft.eissn=2524-3470&rft.coden=MMPRES&rft_id=info:doi/10.1007/BF03402247&rft_dat=%3Cproquest_cross%3E2427795101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884038442&rft_id=info:pmid/&rfr_iscdi=true |