New image-processing algorithm for measurement of bubble size distribution from flotation froth images

Research and experience have demonstrated that the operating conditions of the flotation process are reflected in the froth’s appearance. Despite recent advances in image analysis and several algorithms developed for froth flotation, there still is not a comprehensive algorithm to accurately determi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Minerals & Metallurgical Processing 2011-08, Vol.28 (3), p.146-150
Hauptverfasser: Mehrshad, N., Massinaei, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 3
container_start_page 146
container_title Minerals & Metallurgical Processing
container_volume 28
creator Mehrshad, N.
Massinaei, M.
description Research and experience have demonstrated that the operating conditions of the flotation process are reflected in the froth’s appearance. Despite recent advances in image analysis and several algorithms developed for froth flotation, there still is not a comprehensive algorithm to accurately determine bubble features from actual froth images. Being able to accurately and automatically measure bubble size distribution is an important requirement for optimization and control of the flotation process. Segmentation is one of the most effective approaches for accurately determining the bubble size distribution. In the present study, a new bubble segmentation algorithm, which utilizes an adaptive marker-based watershed transform, is proposed to measure the bubble size distribution from froth images. The developed algorithm is validated using some industrial scale froth images from flotation cells at different duties.
doi_str_mv 10.1007/BF03402247
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_reports_884038442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427795101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-390a404de586177214cbfd3103bf3e5decb029a278cbc8bb3a05fc9c3e7595e83</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EElXphi8wW1DAr9TJEioKSBVsYB3ZzjgNSuJiO0Lw9TUKjw2rmdGcuZp7ETql5JISIq9u1oQLwpiQB2jGciYyLiQ5_O2X7BgtQmg1EYxSIgWfIfsI77jtVQPZzjsDaT00WHWN823c9tg6j3tQYfTQwxCxs1iPWneAQ_sJuG5D9K0eY-sGbL1LB52L6meM20k7nKAjq7oAi-86Ry_r2-fVfbZ5untYXW8yw0oeM14SJYioIS-WVEpGhdG25pRwbTnkNRhNWKmYLIw2hdZckdya0nCQeZlDwefobNJNZt5GCLHysHM-hqooBOGFECwx5xNjvAvBg612Pn3pPypKqq8gq78gE3wxwSFBQwO-enWjH5KH_-g9SkJ0UQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884038442</pqid></control><display><type>article</type><title>New image-processing algorithm for measurement of bubble size distribution from flotation froth images</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Mehrshad, N. ; Massinaei, M.</creator><creatorcontrib>Mehrshad, N. ; Massinaei, M.</creatorcontrib><description>Research and experience have demonstrated that the operating conditions of the flotation process are reflected in the froth’s appearance. Despite recent advances in image analysis and several algorithms developed for froth flotation, there still is not a comprehensive algorithm to accurately determine bubble features from actual froth images. Being able to accurately and automatically measure bubble size distribution is an important requirement for optimization and control of the flotation process. Segmentation is one of the most effective approaches for accurately determining the bubble size distribution. In the present study, a new bubble segmentation algorithm, which utilizes an adaptive marker-based watershed transform, is proposed to measure the bubble size distribution from froth images. The developed algorithm is validated using some industrial scale froth images from flotation cells at different duties.</description><identifier>ISSN: 2524-3462</identifier><identifier>EISSN: 2524-3470</identifier><identifier>DOI: 10.1007/BF03402247</identifier><identifier>CODEN: MMPRES</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Bubbles ; Dams ; Engineering ; Floods ; Image processing systems ; Materials Engineering ; Measurement techniques ; Measures of central tendency ; Metallic Materials ; Mineral processing ; Mineral Resources ; Morphology ; Topography ; Vision systems ; Watersheds</subject><ispartof>Minerals &amp; Metallurgical Processing, 2011-08, Vol.28 (3), p.146-150</ispartof><rights>The Society for Mining, Metallurgy &amp; Exploration 2011</rights><rights>Copyright Society for Mining, Metallurgy, and Exploration, Inc. Aug 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-390a404de586177214cbfd3103bf3e5decb029a278cbc8bb3a05fc9c3e7595e83</citedby><cites>FETCH-LOGICAL-c293t-390a404de586177214cbfd3103bf3e5decb029a278cbc8bb3a05fc9c3e7595e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BF03402247$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BF03402247$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>312,314,780,784,791,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Mehrshad, N.</creatorcontrib><creatorcontrib>Massinaei, M.</creatorcontrib><title>New image-processing algorithm for measurement of bubble size distribution from flotation froth images</title><title>Minerals &amp; Metallurgical Processing</title><addtitle>Mining, Metallurgy &amp; Exploration</addtitle><description>Research and experience have demonstrated that the operating conditions of the flotation process are reflected in the froth’s appearance. Despite recent advances in image analysis and several algorithms developed for froth flotation, there still is not a comprehensive algorithm to accurately determine bubble features from actual froth images. Being able to accurately and automatically measure bubble size distribution is an important requirement for optimization and control of the flotation process. Segmentation is one of the most effective approaches for accurately determining the bubble size distribution. In the present study, a new bubble segmentation algorithm, which utilizes an adaptive marker-based watershed transform, is proposed to measure the bubble size distribution from froth images. The developed algorithm is validated using some industrial scale froth images from flotation cells at different duties.</description><subject>Algorithms</subject><subject>Bubbles</subject><subject>Dams</subject><subject>Engineering</subject><subject>Floods</subject><subject>Image processing systems</subject><subject>Materials Engineering</subject><subject>Measurement techniques</subject><subject>Measures of central tendency</subject><subject>Metallic Materials</subject><subject>Mineral processing</subject><subject>Mineral Resources</subject><subject>Morphology</subject><subject>Topography</subject><subject>Vision systems</subject><subject>Watersheds</subject><issn>2524-3462</issn><issn>2524-3470</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkMtOwzAQRS0EElXphi8wW1DAr9TJEioKSBVsYB3ZzjgNSuJiO0Lw9TUKjw2rmdGcuZp7ETql5JISIq9u1oQLwpiQB2jGciYyLiQ5_O2X7BgtQmg1EYxSIgWfIfsI77jtVQPZzjsDaT00WHWN823c9tg6j3tQYfTQwxCxs1iPWneAQ_sJuG5D9K0eY-sGbL1LB52L6meM20k7nKAjq7oAi-86Ry_r2-fVfbZ5untYXW8yw0oeM14SJYioIS-WVEpGhdG25pRwbTnkNRhNWKmYLIw2hdZckdya0nCQeZlDwefobNJNZt5GCLHysHM-hqooBOGFECwx5xNjvAvBg612Pn3pPypKqq8gq78gE3wxwSFBQwO-enWjH5KH_-g9SkJ0UQ</recordid><startdate>20110801</startdate><enddate>20110801</enddate><creator>Mehrshad, N.</creator><creator>Massinaei, M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7RQ</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0F</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope><scope>U9A</scope></search><sort><creationdate>20110801</creationdate><title>New image-processing algorithm for measurement of bubble size distribution from flotation froth images</title><author>Mehrshad, N. ; Massinaei, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-390a404de586177214cbfd3103bf3e5decb029a278cbc8bb3a05fc9c3e7595e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithms</topic><topic>Bubbles</topic><topic>Dams</topic><topic>Engineering</topic><topic>Floods</topic><topic>Image processing systems</topic><topic>Materials Engineering</topic><topic>Measurement techniques</topic><topic>Measures of central tendency</topic><topic>Metallic Materials</topic><topic>Mineral processing</topic><topic>Mineral Resources</topic><topic>Morphology</topic><topic>Topography</topic><topic>Vision systems</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehrshad, N.</creatorcontrib><creatorcontrib>Massinaei, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Minerals &amp; Metallurgical Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehrshad, N.</au><au>Massinaei, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New image-processing algorithm for measurement of bubble size distribution from flotation froth images</atitle><jtitle>Minerals &amp; Metallurgical Processing</jtitle><stitle>Mining, Metallurgy &amp; Exploration</stitle><date>2011-08-01</date><risdate>2011</risdate><volume>28</volume><issue>3</issue><spage>146</spage><epage>150</epage><pages>146-150</pages><issn>2524-3462</issn><eissn>2524-3470</eissn><coden>MMPRES</coden><abstract>Research and experience have demonstrated that the operating conditions of the flotation process are reflected in the froth’s appearance. Despite recent advances in image analysis and several algorithms developed for froth flotation, there still is not a comprehensive algorithm to accurately determine bubble features from actual froth images. Being able to accurately and automatically measure bubble size distribution is an important requirement for optimization and control of the flotation process. Segmentation is one of the most effective approaches for accurately determining the bubble size distribution. In the present study, a new bubble segmentation algorithm, which utilizes an adaptive marker-based watershed transform, is proposed to measure the bubble size distribution from froth images. The developed algorithm is validated using some industrial scale froth images from flotation cells at different duties.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/BF03402247</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2524-3462
ispartof Minerals & Metallurgical Processing, 2011-08, Vol.28 (3), p.146-150
issn 2524-3462
2524-3470
language eng
recordid cdi_proquest_reports_884038442
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Bubbles
Dams
Engineering
Floods
Image processing systems
Materials Engineering
Measurement techniques
Measures of central tendency
Metallic Materials
Mineral processing
Mineral Resources
Morphology
Topography
Vision systems
Watersheds
title New image-processing algorithm for measurement of bubble size distribution from flotation froth images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20image-processing%20algorithm%20for%20measurement%20of%20bubble%20size%20distribution%20from%20flotation%20froth%20images&rft.jtitle=Minerals%20&%20Metallurgical%20Processing&rft.au=Mehrshad,%20N.&rft.date=2011-08-01&rft.volume=28&rft.issue=3&rft.spage=146&rft.epage=150&rft.pages=146-150&rft.issn=2524-3462&rft.eissn=2524-3470&rft.coden=MMPRES&rft_id=info:doi/10.1007/BF03402247&rft_dat=%3Cproquest_cross%3E2427795101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884038442&rft_id=info:pmid/&rfr_iscdi=true