Creation of demand forecasting models based on public information

Statistic data are reported by government and organizations, and these data are considered to be important for forecasting future demand in the industry. In addition, patens and papers are issued and published all over the world, covering a wide range of technologies, and it would be powerful if thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Information Science and Technology Association 2023/06/01, Vol.73(6), pp.242-245
1. Verfasser: TAKEI, Yoshiyuki
Format: Artikel
Sprache:chi ; eng ; jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 6
container_start_page 242
container_title The Journal of Information Science and Technology Association
container_volume 73
creator TAKEI, Yoshiyuki
description Statistic data are reported by government and organizations, and these data are considered to be important for forecasting future demand in the industry. In addition, patens and papers are issued and published all over the world, covering a wide range of technologies, and it would be powerful if this information could be applied to a forecasting model for demand forecasting. In this paper, we developed a demand forecasting model using the number of patent applications, the number of patent applicants, the value evaluation index of patens, and information on citations of papers, and examined the applicability of the model and which factors are related to demand in fields of photocatalyst and Li-ion batteries.
doi_str_mv 10.18919/jkg.73.6_242
format Article
fullrecord <record><control><sourceid>proquest_jstag</sourceid><recordid>TN_cdi_proquest_reports_2871884437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871884437</sourcerecordid><originalsourceid>FETCH-LOGICAL-j1107-ce3d8d58e15b4cd037130dff3a210936b6fe0a203185b78bb92639d39417241c3</originalsourceid><addsrcrecordid>eNo9kLtPwzAYxC0EElXpyG6xJ9j-nNgZGKqKl1SJBWbLjy8lIS_sdOC_J1DEciedfnfDEXLNWc51xavb9uOQK8hLI6Q4IyuxpJkWSp-TFas4ZKAZvySblFrGmChYIQuxIttdRDs340DHmgbs7RBoPUb0Ns3NcKD9GLBL1NmEgS7UdHRd42kzLFD_W7wiF7XtEm7-fE3eHu5fd0_Z_uXxebfdZy3nTGUeIehQaOSFkz4wUBxYqGuwgrMKSlfWyKxgwHXhlHauEiVUASrJlZDcw5rcnHanOH4eMc0m4jTGORmhFddaSlALdHeC2jTbA5opNr2NX8bGufEdmuUko8CUP7L89J_7dxsNDvANFy9hhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871884437</pqid></control><display><type>article</type><title>Creation of demand forecasting models based on public information</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>TAKEI, Yoshiyuki</creator><creatorcontrib>TAKEI, Yoshiyuki</creatorcontrib><description>Statistic data are reported by government and organizations, and these data are considered to be important for forecasting future demand in the industry. In addition, patens and papers are issued and published all over the world, covering a wide range of technologies, and it would be powerful if this information could be applied to a forecasting model for demand forecasting. In this paper, we developed a demand forecasting model using the number of patent applications, the number of patent applicants, the value evaluation index of patens, and information on citations of papers, and examined the applicability of the model and which factors are related to demand in fields of photocatalyst and Li-ion batteries.</description><identifier>ISSN: 0913-3801</identifier><identifier>EISSN: 2189-8278</identifier><identifier>DOI: 10.18919/jkg.73.6_242</identifier><language>chi ; eng ; jpn</language><publisher>Tokyo: Information Science and Technology Association, Japan</publisher><subject>Demand ; demand forecasting ; Forecasting ; Li-ion battery ; Multiple regression analysis ; patent valuation ; photocatalyst ; RMSE ; Statistical data</subject><ispartof>The Journal of Information Science and Technology Association, 2023/06/01, Vol.73(6), pp.242-245</ispartof><rights>2023 Author(s)</rights><rights>Copyright Information Science and Technology Assn Jun 2023</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>TAKEI, Yoshiyuki</creatorcontrib><title>Creation of demand forecasting models based on public information</title><title>The Journal of Information Science and Technology Association</title><addtitle>JOHO NO KAGAKU TO GIJUTSU</addtitle><description>Statistic data are reported by government and organizations, and these data are considered to be important for forecasting future demand in the industry. In addition, patens and papers are issued and published all over the world, covering a wide range of technologies, and it would be powerful if this information could be applied to a forecasting model for demand forecasting. In this paper, we developed a demand forecasting model using the number of patent applications, the number of patent applicants, the value evaluation index of patens, and information on citations of papers, and examined the applicability of the model and which factors are related to demand in fields of photocatalyst and Li-ion batteries.</description><subject>Demand</subject><subject>demand forecasting</subject><subject>Forecasting</subject><subject>Li-ion battery</subject><subject>Multiple regression analysis</subject><subject>patent valuation</subject><subject>photocatalyst</subject><subject>RMSE</subject><subject>Statistical data</subject><issn>0913-3801</issn><issn>2189-8278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kLtPwzAYxC0EElXpyG6xJ9j-nNgZGKqKl1SJBWbLjy8lIS_sdOC_J1DEciedfnfDEXLNWc51xavb9uOQK8hLI6Q4IyuxpJkWSp-TFas4ZKAZvySblFrGmChYIQuxIttdRDs340DHmgbs7RBoPUb0Ns3NcKD9GLBL1NmEgS7UdHRd42kzLFD_W7wiF7XtEm7-fE3eHu5fd0_Z_uXxebfdZy3nTGUeIehQaOSFkz4wUBxYqGuwgrMKSlfWyKxgwHXhlHauEiVUASrJlZDcw5rcnHanOH4eMc0m4jTGORmhFddaSlALdHeC2jTbA5opNr2NX8bGufEdmuUko8CUP7L89J_7dxsNDvANFy9hhw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>TAKEI, Yoshiyuki</creator><general>Information Science and Technology Association, Japan</general><general>Information Science and Technology Assn</general><scope>E3H</scope><scope>F2A</scope></search><sort><creationdate>20230601</creationdate><title>Creation of demand forecasting models based on public information</title><author>TAKEI, Yoshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j1107-ce3d8d58e15b4cd037130dff3a210936b6fe0a203185b78bb92639d39417241c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng ; jpn</language><creationdate>2023</creationdate><topic>Demand</topic><topic>demand forecasting</topic><topic>Forecasting</topic><topic>Li-ion battery</topic><topic>Multiple regression analysis</topic><topic>patent valuation</topic><topic>photocatalyst</topic><topic>RMSE</topic><topic>Statistical data</topic><toplevel>online_resources</toplevel><creatorcontrib>TAKEI, Yoshiyuki</creatorcontrib><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><jtitle>The Journal of Information Science and Technology Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAKEI, Yoshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creation of demand forecasting models based on public information</atitle><jtitle>The Journal of Information Science and Technology Association</jtitle><addtitle>JOHO NO KAGAKU TO GIJUTSU</addtitle><date>2023-06-01</date><risdate>2023</risdate><volume>73</volume><issue>6</issue><spage>242</spage><epage>245</epage><pages>242-245</pages><issn>0913-3801</issn><eissn>2189-8278</eissn><abstract>Statistic data are reported by government and organizations, and these data are considered to be important for forecasting future demand in the industry. In addition, patens and papers are issued and published all over the world, covering a wide range of technologies, and it would be powerful if this information could be applied to a forecasting model for demand forecasting. In this paper, we developed a demand forecasting model using the number of patent applications, the number of patent applicants, the value evaluation index of patens, and information on citations of papers, and examined the applicability of the model and which factors are related to demand in fields of photocatalyst and Li-ion batteries.</abstract><cop>Tokyo</cop><pub>Information Science and Technology Association, Japan</pub><doi>10.18919/jkg.73.6_242</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0913-3801
ispartof The Journal of Information Science and Technology Association, 2023/06/01, Vol.73(6), pp.242-245
issn 0913-3801
2189-8278
language chi ; eng ; jpn
recordid cdi_proquest_reports_2871884437
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Demand
demand forecasting
Forecasting
Li-ion battery
Multiple regression analysis
patent valuation
photocatalyst
RMSE
Statistical data
title Creation of demand forecasting models based on public information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_jstag&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creation%20of%20demand%20forecasting%20models%20based%20on%20public%20information&rft.jtitle=The%20Journal%20of%20Information%20Science%20and%20Technology%20Association&rft.au=TAKEI,%20Yoshiyuki&rft.date=2023-06-01&rft.volume=73&rft.issue=6&rft.spage=242&rft.epage=245&rft.pages=242-245&rft.issn=0913-3801&rft.eissn=2189-8278&rft_id=info:doi/10.18919/jkg.73.6_242&rft_dat=%3Cproquest_jstag%3E2871884437%3C/proquest_jstag%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2871884437&rft_id=info:pmid/&rfr_iscdi=true